Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 583(7818): 790-795, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728239

RESUMEN

Organic-inorganic hybrid perovskites have electronic and optoelectronic properties that make them appealing in many device applications1-4. Although many approaches focus on polycrystalline materials5-7, single-crystal hybrid perovskites show improved carrier transport and enhanced stability over their polycrystalline counterparts, due to their orientation-dependent transport behaviour8-10 and lower defect concentrations11,12. However, the fabrication of single-crystal hybrid perovskites, and controlling their morphology and composition, are challenging12. Here we report a solution-based lithography-assisted epitaxial-growth-and-transfer method for fabricating single-crystal hybrid perovskites on arbitrary substrates, with precise control of their thickness (from about 600 nanometres to about 100 micrometres), area (continuous thin films up to about 5.5 centimetres by 5.5 centimetres), and composition gradient in the thickness direction (for example, from methylammonium lead iodide, MAPbI3, to MAPb0.5Sn0.5I3). The transferred single-crystal hybrid perovskites are of comparable quality to those directly grown on epitaxial substrates, and are mechanically flexible depending on the thickness. Lead-tin gradient alloying allows the formation of a graded electronic bandgap, which increases the carrier mobility and impedes carrier recombination. Devices based on these single-crystal hybrid perovskites show not only high stability against various degradation factors but also good performance (for example, solar cells based on lead-tin-gradient structures with an average efficiency of 18.77 per cent).

2.
Nat Mater ; 23(7): 960-968, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38514846

RESUMEN

Limitations in electrochemical performance as well as supply chain challenges have rendered positive electrode materials a critical bottleneck for Li-ion batteries. State-of-the-art Li-ion batteries fall short of accessing theoretical capacities. As such, there is intense interest in the design of strategies that enable the more effective utilization of active intercalation materials. Pre-intercalation with alkali-metal ions has attracted interest as a means of accessing higher reversible capacity and improved rate performance. However, the structural basis for improvements in electrochemical performance remains mostly unexplored. Here we use topochemical single-crystal-to-single-crystal transformations in a tunnel-structured ζ-V2O5 positive electrode to illustrate the effect of pre-intercalation in modifying the host lattice and altering diffusion pathways. Furthermore, operando synchrotron X-ray diffraction is used to map Li-ion site preferences and occupancies as a function of the depth of discharge in pre-intercalated materials. Na- and K-ion intercalation 'props open' the one-dimensional tunnel, reduces electrostatic repulsions between inserted Li ions and entirely modifies diffusion pathways, enabling orders of magnitude higher Li-ion diffusivities and accessing higher capacities. Deciphering the atomistic origins of improved performance in pre-intercalated materials on the basis of single-crystal-to-single-crystal topochemical transformation and operando diffraction studies paves the way to site-selective modification approaches for positive electrode design.

3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064084

RESUMEN

Substantial improvements in cycle life, rate performance, accessible voltage, and reversible capacity are required to realize the promise of Li-ion batteries in full measure. Here, we have examined insertion electrodes of the same composition (V2O5) prepared according to the same electrode specifications and comprising particles with similar dimensions and geometries that differ only in terms of their atomic connectivity and crystal structure, specifically two-dimensional (2D) layered α-V2O5 that crystallizes in an orthorhombic space group and one-dimensional (1D) tunnel-structured ζ-V2O5 crystallized in a monoclinic space group. By using particles of similar dimensions, we have disentangled the role of specific structural motifs and atomistic diffusion pathways in affecting electrochemical performance by mapping the dynamical evolution of lithiation-induced structural modifications using ex situ scanning transmission X-ray microscopy, operando synchrotron X-ray diffraction measurements, and phase-field modeling. We find the operation of sharply divergent mechanisms to accommodate increasing concentrations of Li-ions: a series of distortive phase transformations that result in puckering and expansion of interlayer spacing in layered α-V2O5, as compared with cation reordering along interstitial sites in tunnel-structured ζ-V2O5 By alleviating distortive phase transformations, the ζ-V2O5 cathode shows reduced voltage hysteresis, increased Li-ion diffusivity, alleviation of stress gradients, and improved capacity retention. The findings demonstrate that alternative lithiation mechanisms can be accessed in metastable compounds by dint of their reconfigured atomic connectivity and can unlock substantially improved electrochemical performance not accessible in the thermodynamically stable phase.

4.
Nat Mater ; 21(2): 217-227, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34824396

RESUMEN

Lithium-ion batteries are yet to realize their full promise because of challenges in the design and construction of electrode architectures that allow for their entire interior volumes to be reversibly accessible for ion storage. Electrodes constructed from the same material and with the same specifications, which differ only in terms of dimensions and geometries of the constituent particles, can show surprising differences in polarization, stress accumulation and capacity fade. Here, using operando synchrotron X-ray diffraction and energy dispersive X-ray diffraction (EDXRD), we probe the mechanistic origins of the remarkable particle geometry-dependent modification of lithiation-induced phase transformations in V2O5 as a model phase-transforming cathode. A pronounced modulation of phase coexistence regimes is observed as a function of particle geometry. Specifically, a metastable phase is stabilized for nanometre-sized spherical V2O5 particles, to circumvent the formation of large misfit strains. Spatially resolved EDXRD measurements demonstrate that particle geometries strongly modify the tortuosity of the porous cathode architecture. Greater ion-transport limitations in electrode architectures comprising micrometre-sized platelets result in considerable lithiation heterogeneities across the thickness of the electrode. These insights establish particle geometry-dependent modification of metastable phase regimes and electrode tortuosity as key design principles for realizing the promise of intercalation cathodes.

5.
Radiat Phys Chem Oxf Engl 1993 ; 202: 110557, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36189446

RESUMEN

Beginning with the outbreak of COVID-19 at the dawn of 2020, the continuing spread of the pandemic has challenged the healthcare market and the supply chain of Personal Protective Equipment (PPE) around the world. Moreover, the emergence of the variants of COVID-19 occurring in waves threatens the sufficient supply of PPE. Among the various types of PPE, N95 Respirators, surgical masks, and medical gowns are the most consumed and thus have a high potential for a serious shortage during such emergencies. Considering the unanticipated demand for PPE during a pandemic, re-processing of used PPE is one approach to continue to protect the health of first responders and healthcare personnel. This paper evaluates the viability and efficacy of using FDA-approved electron beam (eBeam) sterilization technology (ISO 11137) to re-process used PPE. PPEs including 3M N95 Respirators, Proxima Sirus gowns, and face shields were eBeam irradiated in different media (air, argon) over a dose range of 0-200 kGy. Several tests were then performed to examine surface properties, mechanical properties, functionality performance, discoloration phenomenon, and liquid barrier performance. The results show a reduction of filtration efficiency to about 63.6% in the N95 Respirator; however, charge regeneration may improve the re-processed efficiency. Additionally, mechanical degradation was observed in Proxima Sirus gown with increasing dose up to 100 kGy. However, no mechanical degradation was observed in the face shields after 10 times donning and doffing. Apart from the face shield, N95 Respirators and Proxima Sirus gown both show significant mechanical degradation with ebeam dose over sterilization doses (>25 kGy), indicating that eBeam technology is not appropriate for the re-processing these PPEs.

6.
Proc Natl Acad Sci U S A ; 116(19): 9251-9256, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004058

RESUMEN

We have discovered a peculiar form of fracture that occurs in a highly stretchable silicone elastomer (Smooth-On Ecoflex 00-30). Under certain conditions, cracks propagate in a direction perpendicular to the initial precut and in the direction of the applied load. In other words, the crack deviates from the standard trajectory and instead propagates perpendicular to that trajectory. The crack arrests stably, and thus the material ahead of the crack front continues to sustain load, thereby enabling enormous stretchabilities. We call this phenomenon "sideways" and stable cracking. To explain this behavior, we first perform finite-element simulations that demonstrate a propensity for sideways cracking, even in an isotropic material. The simulations also highlight the importance of crack-tip blunting on the formation of sideways cracks. Next, we provide a hypothesis on the origin of sideways cracking that relates to microstructural anisotropy (in a nominally isotropic elastomer). To substantiate this hypothesis, we transversely prestretch samples to various extents before fracture testing, as to determine the influence of microstructural arrangement (chain alignment and strain-induced crystallization) on fracture energy. We also perform microstructural characterization that indicates that significant chain alignment and strain-induced crystallization indeed occur in this material upon stretching. We conclude by characterizing how a number of loading conditions, such as sample geometry and strain rate, affect this phenomenon. Overall, this paper provides fundamental mechanical insight into basic phenomena associated with fracture of elastomers.

7.
Small ; 14(11): e1703852, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377490

RESUMEN

Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation.

8.
Small ; 13(9)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026109

RESUMEN

Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultralow modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain-isolation effect that enhances not only the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some nonnegligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain-isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid-filled cavity. Examples in skin-mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano-acoustic responses.


Asunto(s)
Elastómeros/química , Líquidos Iónicos/química , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
9.
Nano Lett ; 13(11): 5570-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24099504

RESUMEN

We have measured the fracture energy of lithiated silicon thin-film electrodes as a function of lithium concentration. To this end, we have constructed an electrochemical cell capable of testing multiple thin-film electrodes in parallel. The stress in the electrodes is measured during electrochemical cycling by the substrate curvature technique. The electrodes are disconnected one by one after delithiating to various states of charge, that is, to various concentrations of lithium. The electrodes are then examined by optical microscopy to determine when cracks first form. All of the observed cracks appear brittle in nature. By determining the condition for crack initiation, the fracture energy is calculated using an analysis from fracture mechanics. In the same set of experiments, the fracture energy at a second state of charge (at small concentrations of lithium) is measured by determining the maximum value of the stress during delithiation. The fracture energy was determined to be Γ = 8.5 ± 4.3 J/m(2) at small concentrations of lithium (~Li0.7Si) and have bounds of Γ = 5.4 ± 2.2 J/m(2) to Γ = 6.9 ± 1.9 J/m(2) at larger concentrations of lithium (~Li2.8Si). These values indicate that the fracture energy of lithiated silicon is similar to that of pure silicon and is essentially independent of the concentration of lithium. Thus, lithiated silicon demonstrates a unique ability to flow plastically and fracture in a brittle manner.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Nanoestructuras , Silicio/química , Electrodos , Nanotecnología , Tamaño de la Partícula
10.
J Mech Behav Biomed Mater ; 150: 106267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070452

RESUMEN

Sorghum stems comprise different tissue components, i.e., rind, pith, and vascular bundles in the rind and pith regions, of different cell morphologies and cell wall characteristics. The overall responses of stems to mechanical loadings depend on the responses of these tissues themselves. Investigating how each tissue deforms to various loading conditions will inform us of the failure mechanisms in sorghum stems when exposed to wind loadings, which can guide the development of lodging-resistant variants. To this end, numerical analyses were implemented to investigate the effects of cell morphologies and cell wall properties on the overall mechanical responses of the above four tissues under tension and compression. Microstructures of different tissues were constructed from microscopic images of the tissues using computer-aided design (CAD), which were then used for finite element (FE) analyses. Shell finite elements were used to model the cell walls, and the classical lamination model was used to determine the overall mechanical responses of cell walls having different fiber composite arrangements. The results from the numerical analyses helped explain how the loading (boundary) conditions, the cell microstructures, the mechanical properties of cell walls of different tissues, the cell wall thickness, the microfibril angle (MFA) of fiber composites of the cell walls, and the turgor pressure affected the overall mechanical responses of the tissues. Tissue stiffening or softening behaviors were attributed to different microstructural deformations, i.e., local or global buckling of cell walls, cell collapse, densifications of cells, or reorientation and rearrangement of cells. The mechanical properties and thickness of cell walls only affected the stiffness and load-bearing ability of the tissues. The turgor pressure affected the compressive responses but its effect on tensile responses was negligible. The MFA had a significant influence on the stiffness and load-bearing ability when the tissues were loaded along their longitudinal axis, but it had an insignificant effect on loading in the transverse direction. Tissues with smaller cell sizes and denser cells were stronger and stiffer than those with larger cell sizes. The numerical simulations also revealed that rind and rind vascular bundles were stiffer and had higher load-bearing ability than pith and pith vascular bundles.


Asunto(s)
Sorghum , Estrés Mecánico , Presión , Pared Celular/fisiología , Análisis de Elementos Finitos
11.
Nano Lett ; 12(9): 5039-47, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22889293

RESUMEN

Electrochemical experiments were conducted on {100}, {110}, and {111} silicon wafers to characterize the kinetics of the initial lithiation of crystalline Si electrodes. Under constant current conditions, we observed constant cell potentials for all orientations, indicating the existence of a phase boundary that separates crystalline silicon from the amorphous lithiated phase. For a given potential, the velocity of this boundary was found to be faster for {110} silicon than for the other two orientations. We show that our measurements of varying phase boundary velocities can accurately account for anisotropic morphologies and fracture developed in crystalline silicon nanopillars. We also present a kinetic model by considering the redox reaction at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical reaction at the lithiated silicon/crystalline silicon interface. From this model, we quantify the rates of the reactions at the interfaces and estimate a lower bound on the diffusivity through the lithiated silicon phase.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Microelectrodos , Modelos Químicos , Nanoestructuras/química , Silicio/química , Simulación por Computador , Iones , Cinética , Ensayo de Materiales , Nanoestructuras/ultraestructura , Tamaño de la Partícula
12.
Nano Lett ; 12(8): 4397-403, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22830634

RESUMEN

In the search for high-energy density materials for Li-ion batteries, silicon has emerged as a promising candidate for anodes due to its ability to absorb a large number of Li atoms. Lithiation of Si leads to large deformation and concurrent changes in its mechanical properties, from a brittle material in its pure form to a material that can sustain large inelastic deformation in the lithiated form. These remarkable changes in behavior pose a challenge to theoretical treatment of the material properties. Here, we provide a detailed picture of the origin of changes in the mechanical properties, based on first-principles calculations of the atomic-scale structural and electronic properties in a model amorphous silicon (a-Si) structure. We regard the reactive flow of lithiated silicon as a nonequilibrium process consisting of concurrent Li insertion driven by unbalanced chemical potential and flow driven by deviatoric stress. The reaction enables the material to flow at a lower level of stress. Our theoretical model is in excellent quantitative agreement with experimental measurements of lithiation-induced stress on a Si thin film.

13.
Plant Sci ; 327: 111555, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36481363

RESUMEN

Stem structural failure, or lodging, affects many crops including sorghum, and can cause large yield losses. Lodging is typically caused by mechanical forces associated with severe weather like high winds, but exposure to sub-catastrophic forces may strengthen stems and improve lodging resistance. The responses of sorghum internodes at different developmental stages were examined at 2 and 26 h after initiating moderate mechanical stimulation with an automated apparatus. Transcriptome profiling revealed that mechanical stimulation altered the expression of over 900 genes, including transcription factors, cell wall-related and hormone signaling-related genes. IAA, GA1 and ABA abundances generally declined following mechanical stimulation, while JA increased. Weighted Gene Co-expression Network Analysis (WGCNA) identified three modules significantly enriched in GO terms associated with cell wall biology, hormone signaling and general stress responses, which were highly correlated with mechanical stimulation and with biomechanical and geometrical traits documented in a separate study. Additionally, mechanical stimulation-triggered responses were dependent on the developmental stage of the internode and the duration of stimulation. This study provides insights into the underlying mechanisms of plant hormone-regulated thigmomorphogenesis in sorghum stems. The critical biological processes and hub genes described here may offer opportunities to improve lodging resistance in sorghum and other crops.


Asunto(s)
Sorghum , Transcriptoma , Sorghum/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Hormonas/metabolismo
14.
Adv Mater ; 35(37): e2205294, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36036767

RESUMEN

Future-generation neuromorphic computing seeks to overcome the limitations of von Neumann architectures by colocating logic and memory functions, thereby emulating the function of neurons and synapses in the human brain. Despite remarkable demonstrations of high-fidelity neuronal emulation, the predictive design of neuromorphic circuits starting from knowledge of material transformations remains challenging. VO2 is an attractive candidate since it manifests a near-room-temperature, discontinuous, and hysteretic metal-insulator transition. The transition provides a nonlinear dynamical response to input signals, as needed to construct neuronal circuit elements. Strategies for tuning the transformation characteristics of VO2 based on modification of material properties, interfacial structure, and field couplings, are discussed. Dynamical modulation of transformation characteristics through in situ processing is discussed as a means of imbuing synaptic function. Mechanistic understanding of site-selective modification; external, epitaxial, and chemical strain; defect dynamics; and interfacial field coupling in modifying local atomistic structure, the implications therein for electronic structure, and ultimately, the tuning of transformation characteristics, is emphasized. Opportunities are highlighted for inverse design and for using design principles related to thermodynamics and kinetics of electronic transitions learned from VO2 to inform the design of new Mott materials, as well as to go beyond energy-efficient computation to manifest intelligence.

15.
Ultramicroscopy ; 247: 113700, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36780805

RESUMEN

In this work, we developed a method using precession electron diffraction data to map the residual elastic strain at the nano-scale. The diffraction pattern of each pixel was first collected and denoised. Template matching was then applied using the center spot as the mask to identify the positions of the diffraction disks. Statistics of distances between the selected diffracted disks enable the user to make an informed decision on the reference and to generate strain maps. Strain mapping on an unstrained single crystal sapphire shows the standard deviation of strain measurement is 0.5%. With this method, we were able to successfully measure and map the residual elastic strain in VO2 on sapphire and martensite in a Ni50.3Ti29.7Hf20 shape memory alloy. This approach does not require the user to select a "strain-free area" as a reference and can work on datasets even with the crystals oriented away from zone axes. This method is expected to provide a robust and more accessible alternative means of studying the residual strain of various material systems that complements the existing algorithms for strain mapping.

16.
Nano Lett ; 11(7): 2962-7, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21692465

RESUMEN

Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si-Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young's modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is attributed to continuous lithium-assisted breaking and re-forming of Si-Si bonds and the creation of nanopores.


Asunto(s)
Suministros de Energía Eléctrica , Litio/química , Teoría Cuántica , Silicio/química , Electrodos , Iones/química , Nanotecnología , Tamaño de la Partícula , Propiedades de Superficie
17.
Mater Horiz ; 9(12): 3102-3109, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36285637

RESUMEN

Sodium metal has emerged as a candidate anode material in rechargeable batteries owing to its high theoretical capacity, low standard reduction potential, and abundance in the earth's crust. Prior to practical deployment, it is critical to thoroughly assess sodium's mechanical properties, as to fully understand and thus help mitigate potential failure mechanisms. Herein, we examine the fracture behavior of sodium metal through tensile tests in an inert environment. We find that sodium is nearly insensitive to flaws (crack-like features), i.e., its effective strength is virtually unaffected by the presence of flaws. Instead, under tension, sodium exhibits extreme necking that leads to eventual failure. We also characterize the microstructural features associated with fracture of sodium through scanning electron microscopy studies, which demonstrate several features indicative of highly ductile fracture, including wavy slip and microvoid formation. Finally, we discuss the implications of these experimental observations in the context of battery applications.


Asunto(s)
Fracturas Óseas , Sodio , Humanos , Iones , Suministros de Energía Eléctrica , Electrodos
18.
J Mech Behav Biomed Mater ; 127: 105090, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114492

RESUMEN

Sorghum [Sorghum bicolor (L.) Moench] is a tropical grass that can be used as a bioenergy crop but commonly suffers from stem structural failure (lodging) when exposed to mechanical stimuli, such as rain and wind. Mechanical stimulation can trigger adaptive growth in plant stems (thigmomorphogenesis) by activating regulatory networks of hormones, proteins, transcription factors, and targeted genes, which ultimately alters their physiology, morphology, and biomechanical properties. The goals of this study are 1) to investigate differences in the morpho-anatomical-biomechanical properties of internodes from control and mechanically-stimulated plants and 2) to examine whether the changes also depend on the plant developmental stages at the time of stimulation. The sweet sorghum cultivar Della was grown in a greenhouse under two growth conditions: with and without mechanical stimulation. The mechanical stimulation involved periodic bending of the stems in one direction during a seven-week growth period. At maturity, the anatomical traits of the stimulated and non-stimulated stems were characterized, including internode lengths and diameters, and biomechanical properties, including elastic (instantaneous) modulus, flexural stiffness, strength, and time-dependent compliance under bending. The morpho-anatomical and biomechanical characteristics of two internodes of the stems that were at different stages of development at the time of mechanical stimulation were examined. Younger internodes were more responsive and experienced more pronounced changes in length due to the stimulation when compared to the older internodes. Statistical analyses showed differences between the stimulated and non-stimulated stems in terms of both their anatomical and biomechanical properties. Mechanical stimulation produced shorter internodes with slightly larger diameters, as well as softer (more compliant) and stronger stems.


Asunto(s)
Sorghum , Fenómenos Biomecánicos , Sorghum/genética , Sorghum/metabolismo
19.
Front Chem ; 10: 888285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646817

RESUMEN

Gamma-ray irradiation, using the cobalt-60 isotope, is the most common radiation modality used for medical device and biopharmaceutical products sterilization. Although X-ray and electron-beam (e-beam) sterilization technologies are mature and have been in use for decades, impediments remain to switching to these sterilization modalities because of lack of data on the resulting radiation effects for the associated polymers, as well as a lack of education for manufacturers and regulators on the viability of these sterilization alternatives. For this study, the compatibility of ethylene vinyl acetate (EVA) multilayer films with different ionizing radiation sterilization (X-ray, e-beam, and gamma irradiation) is determined by measuring chemical and physical film properties using high performance liquid chromatography, differential scanning calorimetry, Fourier-Transform InfraRed spectroscopy (FTIR), surface energy measurement, and electron spin resonance techniques. The results indicate that the three irradiation modalities induce no differences in thermal properties in the investigated dose range. Gamma and X-Ray irradiations generate the same level of reactive species in the EVA multilayer film, whereas e-beam generates a reduced quantity of reactive species.

20.
PLoS One ; 17(2): e0262818, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213564

RESUMEN

This paper reports a plasma reactive oxygen species (ROS) method for decontamination of PPE (N95 respirators and gowns) using a surface DBD source to meet the increased need of PPE due to the COVID-19 pandemic. A system is presented consisting of a mobile trailer (35 m3) along with several Dielectric barrier discharge sources installed for generating a plasma ROS level to achieve viral decontamination. The plasma ROS treated respirators were evaluated at the CDC NPPTL, and additional PPE specimens and material functionality testing were performed at Texas A&M. The effects of decontamination on the performance of respirators were tested using a modified version of the NIOSH Standard Test Procedure TEB-APR-STP-0059 to determine particulate filtration efficiency. The treated Prestige Ameritech and BYD brand N95 respirators show filtration efficiencies greater than 95% and maintain their integrity. The overall mechanical and functionality tests for plasma ROS treated PPE show no significant variations.


Asunto(s)
COVID-19/prevención & control , Descontaminación/métodos , Equipo de Protección Personal , Especies Reactivas de Oxígeno , Equipo Reutilizado , Humanos , Respiradores N95
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA