RESUMEN
Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.
Asunto(s)
Enfermedad de Parkinson , Humanos , Femenino , Masculino , Enfermedad de Parkinson/genética , Estudio de Asociación del Genoma Completo , Caracteres Sexuales , Fenotipo , EncéfaloRESUMEN
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by neuronal loss and gliosis, with oligodendroglial cytoplasmic inclusions (GCIs) containing α-synuclein being the primary pathological hallmark. Clinical presentations of MSA overlap with other parkinsonian disorders, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP), posing challenges in early diagnosis. Numerous studies have reported alterations in DNA methylation in neurodegenerative diseases, with candidate loci being identified in various parkinsonian disorders including MSA, PD, and PSP. Although MSA and PSP present with substantial white matter pathology, alterations in white matter have also been reported in PD. However, studies comparing the DNA methylation architectures of white matter in these diseases are lacking. We therefore aimed to investigate genome-wide DNA methylation patterns in the frontal lobe white matter of individuals with MSA (n = 17), PD (n = 17), and PSP (n = 16) along with controls (n = 15) using the Illumina EPIC array, to identify shared and disease-specific DNA methylation alterations. Genome-wide DNA methylation profiling of frontal lobe white matter in the three parkinsonian disorders revealed substantial commonalities in DNA methylation alterations in MSA, PD, and PSP. We further used weighted gene correlation network analysis to identify disease-associated co-methylation signatures and identified dysregulation in processes relating to Wnt signaling, signal transduction, endoplasmic reticulum stress, mitochondrial processes, RNA interference, and endosomal transport to be shared between these parkinsonian disorders. Our overall analysis points toward more similarities in DNA methylation patterns between MSA and PD, both synucleinopathies, compared to that between MSA and PD with PSP, which is a tauopathy. Our results also highlight several shared DNA methylation changes and pathways indicative of converging molecular mechanisms in the white matter contributing toward neurodegeneration in all three parkinsonian disorders.
Asunto(s)
Metilación de ADN , Lóbulo Frontal , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Sustancia Blanca , Humanos , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Metilación de ADN/genética , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Sustancia Blanca/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Anciano , Femenino , Masculino , Lóbulo Frontal/patología , Lóbulo Frontal/metabolismo , Persona de Mediana Edad , Anciano de 80 o más AñosRESUMEN
BACKGROUND: Genetics influence cognitive progression in Parkinson's disease, possibly through mechanisms related to Lewy and Alzheimer's disease pathology. Lysosomal polygenic burden has recently been linked to more severe Lewy pathology post mortem. OBJECTIVES: To assess the influence of lysosomal polygenic burden on cognitive progression in Parkinson's disease patients with low Alzheimer's disease risk. METHODS: Using Cox regression we assessed association between lysosomal polygenic scores and time to Montreal Cognitive Assessment score ≤ 21 in the Parkinson's Progression Markers Initiative cohort (n = 374), with replication in data from the Parkinson's Disease Biomarker Program (n = 777). Patients were stratified by Alzheimer's disease polygenic risk. RESULTS: The lysosomal polygenic score was associated with faster progression of cognitive decline in patients with low Alzheimer's disease risk in both datasets (P = 0.0032 and P = 0.0054, respectively). CONCLUSION: Our study supports complex interplay between genetics and neuropathology in Parkinson's disease-related cognitive impairment, emphasizing the role of lysosomal polygenic burden. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/complicaciones , BiomarcadoresRESUMEN
Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-ß and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-ß and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Parkinson/patología , Estudio de Asociación del Genoma Completo , Péptidos beta-Amiloides/metabolismo , Lisosomas/metabolismoRESUMEN
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Transcriptoma , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Cuerpos de Lewy/patología , Encéfalo/patología , Degeneración Nerviosa/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
OBJECTIVE: Understanding how different parts of the immune system contribute to pathogenesis in Parkinson's disease is a burning challenge with important therapeutic implications. We studied enrichment of common variant heritability for Parkinson's disease stratified by immune and brain cell types. METHODS: We used summary statistics from the most recent meta-analysis of genomewide association studies in Parkinson's disease and partitioned heritability using linkage disequilibrium score regression, stratified for specific cell types, as defined by open chromatin regions. We also validated enrichment results using a polygenic risk score approach and intersected disease-associated variants with epigenetic data and expression quantitative loci to nominate and explore a putative microglial locus. RESULTS: We found significant enrichment of Parkinson's disease risk heritability in open chromatin regions of microglia and monocytes. Genomic annotations overlapped substantially between these 2 cell types, and only the enrichment signal for microglia remained significant in a joint model. We present evidence suggesting P2RY12, a key microglial gene and target for the antithrombotic agent clopidogrel, as the likely driver of a significant Parkinson's disease association signal on chromosome 3. INTERPRETATION: Our results provide further support for the importance of immune mechanisms in Parkinson's disease pathogenesis, highlight microglial dysregulation as a contributing etiological factor, and nominate a targetable microglial gene candidate as a pathogenic player. Immune processes can be modulated by therapy, with potentially important clinical implications for future treatment in Parkinson's disease. ANN NEUROL 2021;89:942-951.
Asunto(s)
Microglía/inmunología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/inmunología , Cromatina/genética , Cromosomas Humanos Par 3/genética , Clopidogrel/farmacología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Celular , Desequilibrio de Ligamiento , Microglía/patología , Monocitos/patología , Herencia Multifactorial , Enfermedad de Parkinson/patología , Polimorfismo de Nucleótido Simple/genética , Receptores Purinérgicos P2Y12/genética , Medición de RiesgoRESUMEN
OBJECTIVE: Parkinson's disease (PD) is a complex neurodegenerative disorder. Men are on average ~ 1.5 times more likely to develop PD compared to women with European ancestry. Over the years, genomewide association studies (GWAS) have identified numerous genetic risk factors for PD, however, it is unclear whether genetics contribute to disease etiology in a sex-specific manner. METHODS: In an effort to study sex-specific genetic factors associated with PD, we explored 2 large genetic datasets from the International Parkinson's Disease Genomics Consortium and the UK Biobank consisting of 13,020 male PD cases, 7,936 paternal proxy cases, 89,660 male controls, 7,947 female PD cases, 5,473 maternal proxy cases, and 90,662 female controls. We performed GWAS meta-analyses to identify distinct patterns of genetic risk contributing to disease in male versus female PD cases. RESULTS: In total, 19 genomewide significant regions were identified and no sex-specific effects were observed. A high genetic correlation between the male and female PD GWAS were identified (rg = 0.877) and heritability estimates were identical between male and female PD cases (~ 20%). INTERPRETATION: We did not detect any significant genetic differences between male or female PD cases. Our study does not support the notion that common genetic variation on the autosomes could explain the difference in prevalence of PD between males and females cases at least when considering the current sample size under study. Further studies are warranted to investigate the genetic architecture of PD explained by X and Y chromosomes and further evaluate environmental effects that could potentially contribute to PD etiology in male versus female patients. ANN NEUROL 2021;90:41-48.
Asunto(s)
Predisposición Genética a la Enfermedad , Genotipo , Enfermedad de Parkinson/genética , Caracteres Sexuales , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Parkinson's disease (PD) is a highly age-related disorder, where common genetic risk variants affect both disease risk and age at onset. A statistical approach that integrates these effects across all common variants may be clinically useful for individual risk stratification. A polygenic hazard score methodology, leveraging a time-to-event framework, has recently been successfully applied in other age-related disorders. OBJECTIVES: We aimed to develop and validate a polygenic hazard score model in sporadic PD. METHODS: Using a Cox regression framework, we modeled the polygenic hazard score in a training data set of 11,693 PD patients and 9841 controls. The score was then validated in an independent test data set of 5112 PD patients and 5372 controls and a small single-study sample of 360 patients and 160 controls. RESULTS: A polygenic hazard score predicts the onset of PD with a hazard ratio of 3.78 (95% confidence interval 3.49-4.10) when comparing the highest to the lowest risk decile. Combined with epidemiological data on incidence rate, we apply the score to estimate genetically stratified instantaneous PD risk across age groups. CONCLUSIONS: We demonstrate the feasibility of a polygenic hazard approach in PD, integrating the genetic effects on disease risk and age at onset in a single model. In combination with other predictive biomarkers, the approach may hold promise for risk stratification in future clinical trials of disease-modifying therapies, which aim at postponing the onset of PD. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , Biomarcadores , Humanos , Incidencia , Herencia Multifactorial/genética , Enfermedad de Parkinson/genética , Factores de RiesgoRESUMEN
BACKGROUND: Huntington's disease (HD) is a progressive genetic neurodegenerative disease accompanied by mental and neurocognitive disabilities, which requires long-term and comprehensive treatment and care. Information on the health and economic burden of HD is scarce, but essential for conducting health economic analyses, in light of the prospect of new therapies for HD. In this study, we aim to identify values for Health-Related Quality of Life (HRQoL), describe service utilization and costs, and their associations with clinical and socio-demographic variables across all phases of HD. METHODS: A cross-sectional study including 86 patients across all phases of HD. Values of HRQoL were calculated based on EQ-5D-3L index scores. Additionally, health care and societal costs were estimated based on service utilization collected using the Client Service Receipt Inventory (CSRI) and data from the patients' interviews. Total societal costs included costs of primary and secondary health care services, informal care and productivity loss of the patients. Multiple regression analyses were used to investigate associations between socio-demographic and clinical variables on HRQoL and costs. RESULTS: HRQoL values declined, while total costs increased across disease severity. Total six-month healthcare costs and total societal costs were 18,538 and 66,789 respectively. Healthcare and societal costs doubled from early to middle phase, and tripled from middle to advanced disease phase. Main six-month cost components for the three disease phases were informal care costs ( 30,605) accounting for approximately half the total societal costs, and costs due to production loss ( 18,907) being slightly higher than the total healthcare costs. Disease severity and gender were found to have the strongest effect on both values of HRQoL and costs. CONCLUSIONS: Reported values of HRQoL and costs including costs for production loss may be used in modelling the cost-effectiveness of treatment for HD. Our results highlight the crucial role the informal caregivers play in the care provided to HD patients in all disease phases. Future research should focus on the estimation of productivity loss among informal caregivers.
Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Calidad de Vida , Costo de Enfermedad , Estudios Transversales , Encuestas y Cuestionarios , Enfermedad de Huntington/terapia , Costos de la Atención en Salud , Noruega/epidemiologíaRESUMEN
OBJECTIVE: Rapid eye movement sleep behavior disorder (RBD) is a prodromal synucleinopathy, as >80% will eventually convert to overt synucleinopathy. We performed an in-depth analysis of the SNCA locus to identify RBD-specific risk variants. METHODS: Full sequencing and genotyping of SNCA was performed in isolated/idiopathic RBD (iRBD, n = 1,076), Parkinson disease (PD, n = 1,013), dementia with Lewy bodies (DLB, n = 415), and control subjects (n = 6,155). The iRBD cases were diagnosed with RBD prior to neurodegeneration, although some have since converted. A replication cohort from 23andMe of PD patients with probable RBD (pRBD) was also analyzed (n = 1,782 cases; n = 131,250 controls). Adjusted logistic regression models and meta-analyses were performed. Effects on conversion rate were analyzed in 432 RBD patients with available data using Kaplan-Meier survival analysis. RESULTS: A 5'-region SNCA variant (rs10005233) was associated with iRBD (odds ratio [OR] = 1.43, p = 1.1E-08), which was replicated in pRBD. This variant is in linkage disequilibrium (LD) with other 5' risk variants across the different synucleinopathies. An independent iRBD-specific suggestive association (rs11732740) was detected at the 3' of SNCA (OR = 1.32, p = 4.7E-04, not statistically significant after Bonferroni correction). Homozygous carriers of both iRBD-specific SNPs were at highly increased risk for iRBD (OR = 5.74, p = 2E-06). The known top PD-associated variant (3' variant rs356182) had an opposite direction of effect in iRBD compared to PD. INTERPRETATION: There is a distinct pattern of association at the SNCA locus in RBD as compared to PD, with an opposite direction of effect at the 3' of SNCA. Several 5' SNCA variants are associated with iRBD and with pRBD in overt synucleinopathies. ANN NEUROL 2020;87:584-598.
Asunto(s)
Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/genética , alfa-Sinucleína/genética , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Sinucleinopatías/genéticaRESUMEN
BACKGROUND: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. OBJECTIVES: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. METHODS: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. RESULTS: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. CONCLUSIONS: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management. © 2020 International Parkinson and Movement Disorder Society.
Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Actividades Cotidianas , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Enfermedad de Parkinson/epidemiologíaRESUMEN
Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.
Asunto(s)
Catepsina B/genética , Glucosilceramidasa/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedad de Parkinson/genética , Penetrancia , alfa-Sinucleína/genética , Edad de Inicio , Estudios de Casos y Controles , Catepsina B/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Glucosilceramidasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Enfermedad por Cuerpos de Lewy/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Factores de Riesgo , Secuenciación Completa del Genoma , alfa-Sinucleína/metabolismoRESUMEN
Atypical parkinsonism syndromes are a heterogeneous group of neurodegenerative disorders that include corticobasal degeneration (CBD), Lewy body dementia (LBD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). The APOE ε4 allele is a well-established risk factor for Alzheimer's disease; however, the role of APOE in atypical parkinsonism syndromes remains controversial. To examine the associations of APOE ε4 and ε2 alleles with risk of developing these syndromes, a total of 991 pathologically-confirmed atypical parkinsonism cases were genotyped using the Illumina NeuroChip array. We also performed genotyping and logistic regression analyses to examine APOE frequency and associated risk in patients with Alzheimer's disease (nâ¯=â¯571) and Parkinson's disease (nâ¯=â¯348). APOE genotypes were compared to those from neurologically healthy controls (nâ¯=â¯591). We demonstrate that APOE ε4 and ε2 carriers have a significantly increased and decreased risk, respectively, of developing Alzheimer's disease (ε4: OR: 4.13, 95% CI: 3.23-5.26, pâ¯=â¯3.67â¯×â¯10-30; ε2: OR: 0.21, 95% CI: 0.13-0.34; pâ¯=â¯5.39â¯×â¯10-10) and LBD (ε4: OR: 2.94, 95% CI: 2.34-3.71, pâ¯=â¯6.60â¯×â¯10-20; ε2: ORâ¯=â¯OR: 0.39, 95% CI: 0.26-0.59; pâ¯=â¯6.88â¯×â¯10-6). No significant associations with risk for CBD, MSA, or PSP were observed. We also show that APOE ε4 decreases survival in a dose-dependent manner in Alzheimer's disease and LBD. Taken together, this study does not provide evidence to implicate a role of APOE in the neuropathogenesis of CBD, MSA, or PSP. However, we confirm association of the APOE ε4 allele with increased risk for LBD, and importantly demonstrate that APOE ε2 reduces risk of this disease.
Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Demencia/genética , Enfermedad por Cuerpos de Lewy/genética , Atrofia de Múltiples Sistemas/genética , Enfermedad de Parkinson/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Demencia/patología , Femenino , Genotipo , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , Parálisis Supranuclear Progresiva/patologíaRESUMEN
OBJECTIVE: The goal of this study was to refine our understanding of disease risk attributable to common genetic variation in SNCA, a major locus in Parkinson disease, with potential implications for clinical trials targeting α-synuclein. We aimed to dissect the multiple independent association signals, stratify individuals by SNCA-specific risk profiles, and explore expression quantitative trait loci. METHODS: We analyzed participant-level data from 12,503 patients and 12,502 controls, optimizing a risk model and assessing SNCA-specific risk scores and haplotypes as predictors of individual risk. We also explored hypotheses about functional mechanisms and correlated risk variants to gene expression in human brain and protein levels in cerebrospinal fluid. RESULTS: We report and replicate a novel, third independent association signal at genome-wide significance level downstream of SNCA (rs2870004, p = 3.0*10-8 , odds ratio [OR] = 0.88, 95% confidence interval [CI] = 0.84-0.92). SNCA risk score stratification showed a 2-fold difference in disease susceptibility between top and bottom quintiles (OR = 1.99, 95% CI = 1.78-2.23). Contrary to previous reports, we provide evidence supporting top variant rs356182 as functional in itself and associated with a specific SNCA 5' untranslated region transcript isoform in frontal cortex. INTERPRETATION: The SNCA locus harbors a minimum of 3 independent association signals for Parkinson disease. We demonstrate a fine-grained stratification of α-synuclein-related genetic burden in individual patients of potential future clinical relevance. Further efforts to pinpoint the functional mechanisms are warranted, including studies of the likely causal top variant rs356182 and its role in regulating levels of specific SNCA mRNA transcript variants. Ann Neurol 2018;83:117-129.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , alfa-Sinucleína/genética , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Análisis de RegresiónRESUMEN
BACKGROUND: PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. OBJECTIVES: To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. METHODS: Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. RESULTS: The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. CONCLUSIONS: We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society.
Asunto(s)
Endocitosis/fisiología , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de RiesgoRESUMEN
BACKGROUND: Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES: To resolve the role of LRRK2 in the Indian population. METHODS: We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS: We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS: Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.
Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Femenino , Frecuencia de los Genes , Genotipo , Haplotipos , Humanos , India , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto JovenRESUMEN
BACKGROUND: Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES: To identify the genetic determinants of PD age at onset. METHODS: Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS: We estimated that the heritability of PD age at onset attributed to common genetic variation was â¼0.11, lower than the overall heritability of risk for PD (â¼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS: Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.
Asunto(s)
Edad de Inicio , Sitios Genéticos , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glucosilceramidasa/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto JovenRESUMEN
BACKGROUND: Several reports have identified different patterns of Parkinson's disease progression in individuals carrying missense variants in GBA or LRRK2 genes. The overall contribution of genetic factors to the severity and progression of Parkinson's disease, however, has not been well studied. OBJECTIVES: To test the association between genetic variants and the clinical features of Parkinson's disease on a genomewide scale. METHODS: We accumulated individual data from 12 longitudinal cohorts in a total of 4093 patients with 22,307 observations for a median of 3.81 years. Genomewide associations were evaluated for 25 cross-sectional and longitudinal phenotypes. Specific variants of interest, including 90 recently identified disease-risk variants, were also investigated post hoc for candidate associations with these phenotypes. RESULTS: Two variants were genomewide significant. Rs382940(T>A), within the intron of SLC44A1, was associated with reaching Hoehn and Yahr stage 3 or higher faster (hazard ratio 2.04 [1.58-2.62]; P value = 3.46E-8). Rs61863020(G>A), an intergenic variant and expression quantitative trait loci for α-2A adrenergic receptor, was associated with a lower prevalence of insomnia at baseline (odds ratio 0.63 [0.52-0.75]; P value = 4.74E-8). In the targeted analysis, we found 9 associations between known Parkinson's risk variants and more severe motor/cognitive symptoms. Also, we replicated previous reports of GBA coding variants (rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and cognitive decline over time, and an APOE E4 tagging variant (rs429358) being associated with greater cognitive deficits in patients. CONCLUSIONS: We identified novel genetic factors associated with heterogeneity of Parkinson's disease. The results can be used for validation or hypothesis tests regarding Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Biomarcadores , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Estudios de Cohortes , Estudios Transversales , Progresión de la Enfermedad , Femenino , Glucosilceramidasa/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Catión Orgánico/genética , Enfermedad de Parkinson/psicología , Fenotipo , Medición de RiesgoRESUMEN
BACKGROUND: Parkinson's disease is a heterogeneous disorder where genetic factors may underlie clinical variability. Rapid eye movement sleep behavior disorder (RBD) is a parasomnia strongly linked to synucleinopathies, including Parkinson's disease. We hypothesized that SNCA variants conferring risk of Parkinson's disease would also predispose to an RBD phenotype. METHODS: We assessed possible RBD (pRBD) status using the RBD screening questionnaire and investigated known susceptibility variants for Parkinson's disease located in the α-synuclein (SNCA) and tau (MAPT) gene loci in 325 Parkinson's disease patients. Associations between genetic risk variants and RBD were investigated by logistic regression, and an independent dataset of 382 patients from the Parkinson's Progression Marker Initiative (PPMI) study was used for replication. RESULTS: pRBD was associated with rs3756063 located in the 5' region of SNCA (two-sided p = 0.018, odds ratio 1.44). We replicated this finding in the PPMI dataset (one-sided p = 0.036, odds ratio 1.35) and meta-analyzed the results (two-sided p = 0.0032, odds ratio 1.40). The Parkinson's disease risk variant in the 3' region of SNCA and the MAPT variant showed no association with pRBD. CONCLUSIONS: Our findings provide proof of principle that a largely stable, dichotomous clinical feature of Parkinson's disease can be linked to a specific genetic susceptibility profile. Indirectly, it also supports the hypothesis of RBD as relevant marker for a distinct subtype of the disorder.