RESUMEN
The regional heterogeneity of microglia was first described a century ago by Pio del Rio Hortega. Currently, new information on microglia heterogeneity throughout central nervous system (CNS) regions is being revealed by high-throughput techniques. It remains unclear whether these spatial specificities translate into different microglial behaviors in vitro. We cultured microglia isolated from the cortex and spinal cord and analyzed the effect of the CNS spatial source on behavior in vitro by applying the same experimental protocol and culture conditions. We analyzed the microglial cell numbers, function, and morphology and found a distinctive in vitro phenotype. We found that microglia were present in higher numbers in the spinal-cord-derived glial cultures, presenting different expressions of inflammatory genes and a lower phagocytosis rate under basal conditions or after activation with LPS and IFN-γ. Morphologically, the cortical microglial cells were more complex and presented longer ramifications, which were also observed in vivo in CX3CR1+/GFP transgenic reporter mice. Collectively, our data demonstrated that microglial behavior in vitro is defined according to specific spatial characteristics acquired by the tissue. Thus, our study highlights the importance of microglia as a source of CNS for in vitro studies.
Asunto(s)
Sistema Nervioso Central , Microglía , Animales , Ratones , Microglía/metabolismo , Neuroglía , Médula Espinal , Fagocitosis/fisiología , Ratones TransgénicosRESUMEN
BACKGROUND: Alterations in the immune system are a complication of spinal cord injury (SCI) and have been linked to an excessive sympathetic outflow to lymphoid organs. Still unknown is whether these peripheral immune changes also contribute for the deleterious inflammatory response mounted at the injured spinal cord. METHODS: We analyzed different molecular outputs of the splenic sympathetic signaling for the first 24 h after a thoracic compression SCI. We also analyzed the effect of ablating the splenic sympathetic signaling to the innate immune and inflammatory response at the spleen and spinal cord 24 h after injury. RESULTS: We found that norepinephrine (NE) levels were already raised at this time-point. Low doses of NE stimulation of splenocytes in vitro mainly affected the neutrophils' population promoting an increase in both frequency and numbers. Interestingly, the interruption of the sympathetic communication to the spleen, by ablating the splenic nerve, resulted in reduced frequencies and numbers of neutrophils both at the spleen and spinal cord 1 day post-injury. CONCLUSION: Collectively, our data demonstrates that the splenic sympathetic signaling is involved in the infiltration of neutrophils after spinal cord injury. Our findings give new mechanistic insights into the dysfunctional regulation of the inflammatory response mounted at the injured spinal cord.
Asunto(s)
Fibras Adrenérgicas/fisiología , Infiltración Neutrófila/fisiología , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Bazo/inervación , Bazo/fisiología , Fibras Adrenérgicas/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/inmunología , Vértebras TorácicasRESUMEN
Introduction: The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods: In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results: We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-ß1 (M(IL-10+TGF-ß1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-ß1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-ß1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-ß1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion: Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.
Asunto(s)
Interleucina-10 , Traumatismos de la Médula Espinal , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta1 , Proteómica , Secretoma , Traumatismos de la Médula Espinal/terapiaRESUMEN
Spinal cord injury (SCI) leads to severe functional deficits. Currently, there are no available pharmacological treatments to promote neurological recovery in SCI patients. Recent work from our group has shown that a baclofen treatment can promote functional recovery after a compression SCI in mice [1]. Here, we provide transcriptomic (RNA-seq) data from adult mouse spinal cords collected 7 days after a compression SCI and baclofen (vs vehicle) administration. The Illumina NovaSeq 6000 platform was used to generate the raw transcriptomic data. In addition, we also present bioinformatic analyses including differential gene expression analysis, enrichment analyses for various functional annotations (gene ontology, KEGG and BioCarta pathways or InterPro domains) and transcription factor targets. The raw RNA-seq data has been uploaded to the NCBI Sequence Read Archive (SRA) database (Bioproject ID PRJNA886048). The data generated from the bioinformatic analyses is contained within the article.
RESUMEN
BACKGROUND CONTEXT: Traumatic spinal cord injury (SCI) leads to severe motor and sensory functional impairments that affect personal and social behaviors. Medical advancements have improved supportive therapeutic measures for SCI patients, but no effective neuroregenerative therapeutic options exist to date. Deficits in motor function are the most visible consequence of SCI. However, other complications, as spasticity, produce a significant impact on SCI patient's welfare. Baclofen, a GABA agonist, is the most effective drug for spasticity treatment. Interestingly, emerging data reveals that baclofen can also play a role on neuroprotection and regeneration after SCI. PURPOSE: The goal of this study was to understand the potential of baclofen as a treatment to promote recovery after SCI. STUDY DESIGN: We used a pre-clinical SCI mouse model with the administration of baclofen 1 mg/Kg at different time-points after injury. METHODS: Behavior analysis (locomotor and bladder function) were performed during nine weeks of the in vivo experiment. Afterwards, spinal cords were collected and processed for histological and molecular analysis. RESULTS: Our data showed that baclofen leads to locomotor improvements in mice when its administered acutely after SCI. Moreover, baclofen administration also led to improved bladder function control in all experimental groups. Interestingly, acute baclofen administration modulates microglia activation state and levels of circulating chemokines and cytokines, suggesting a putative role of baclofen in the modulation of the immune response. CONCLUSIONS: Although further studies must be performed to understand the mechanisms that underlie the functional improvements produced by baclofen, our data shed light into the pharmacological potential of baclofen to promote recovery after SCI. CLINICAL RELEVANCE: Our outcomes revealed that baclofen, a well-known drug used for spasticity management, improves the motor performance after SCI in a pre-clinical animal model. Our data opens new avenues for pharmacological strategies design to promote SCI recovery.
Asunto(s)
Baclofeno , Traumatismos de la Médula Espinal , Ratones , Animales , Baclofeno/farmacología , Baclofeno/uso terapéutico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Recuperación de la FunciónRESUMEN
Mesenchymal stem cells (MSCs) hold promising therapeutic potential in several clinical applications, mainly due to their paracrine activity. The implementation of future secretome-based therapeutic strategies requires the use of easily accessible MSCs sources that provide high numbers of cells with homogenous characteristics. MSCs obtained from induced pluripotent stem cells (iMSCs) have been put forward as an advantageous alternative to the gold-standard tissue sources, such as bone marrow (BM-MSCs). In this study, we aimed at comparing the secretome of BM-MSCs and iMSCs over long-term culture. For that, we performed a broad characterization of both sources regarding their identity, proteomic secretome analysis, as well as replicative senescence and associated phenotypes, including its effects on MSCs secretome composition and immunomodulatory action. Our results evidence a rejuvenated phenotype of iMSCs, which is translated into a superior proliferative capacity before the induction of replicative senescence. Despite this significant difference between iMSCs and BM-MSCs proliferation, both untargeted and targeted proteomic analysis revealed a similar secretome composition for both sources in pre-senescent and senescent states. These results suggest that shifting from the use of BM-MSCs to a more advantageous source, like iMSCs, may yield similar therapeutic effects as identified over the past years for this gold-standard MSC source.
Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Diferenciación Celular , Proteómica , Secretoma , Senescencia CelularRESUMEN
Adipose tissue derived stem cells (ASCs) are recognized to secret a myriad of molecules (secretome) know to modulate inflammatory response, promote axonal growth as well vascular remodeling and cellular survival. In previous works we have reported the benefit effects of ASCs transplanted to the injury site in a rat model of spinal cord injury (SCI). Emerging evidence have shown that the therapeutic actions of these cells are a consequence of their intense paracrine activity mediated by their secretome, which includes soluble bioactive molecules and vesicles. In this study, we intended to dissect the vesicular and protein individual function, comparing with whole secretome therapeutic effect. Therefore, we identified a beneficial effect of the whole secretome on neurite growth compared with protein or vesicular fraction alone and characterized their impact on microglia in vitro. Moreover, in a compression SCI mice model, from the motor tests performed, a statistical difference was found on beam balance test revealing differences in motor recovery between the use of the whole the secretome or their protein fraction. Finally, two different delivery methods, local or peripheral (IV), of ASC secretome were tested in vivo. Results indicate that when injected intravenously the secretome of ASCs has a beneficial effect on motor recovery of spinal cord injury animals compared with a single local injection and respective controls. Overall, our results showed that the whole secretome performed better than the fractions individually, raising ASC secretome mode of action as a synergy of proteic and vesicular fraction on SCI context. Also, when intravenously delivered, ASC secretome can promote SCI animal's motor recovery highlighting their therapeutic potential.
Asunto(s)
Secretoma , Traumatismos de la Médula Espinal , Tejido Adiposo/metabolismo , Animales , Ratones , Ratas , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Células Madre/metabolismoRESUMEN
Transplantation of stem cells, in particular mesenchymal stem cells (MSCs), stands as a promising therapy for trauma, stroke or neurodegenerative conditions such as spinal cord or traumatic brain injuries (SCI or TBI), ischemic stroke (IS), or Parkinson's disease (PD). Over the last few years, cell transplantation-based approaches have started to focus on the use of cell byproducts, with a strong emphasis on cell secretome. Having this in mind, the present review discusses the current state of the art of secretome-based therapy applications in different central nervous system (CNS) pathologies. For this purpose, the following topics are discussed: (1) What are the main cell secretome sources, composition, and associated collection techniques; (2) Possible differences of the therapeutic potential of the protein and vesicular fraction of the secretome; and (3) Impact of the cell secretome on CNS-related problems such as SCI, TBI, IS, and PD. With this, we aim to clarify some of the main questions that currently exist in the field of secretome-based therapies and consequently gain new knowledge that may help in the clinical application of secretome in CNS disorders.