Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 50(3): 323-32, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23603115

RESUMEN

To improve replication fidelity, mismatch repair (MMR) must detect non-Watson-Crick base pairs and direct their repair to the nascent DNA strand. Eukaryotic MMR in vitro requires pre-existing strand discontinuities for initiation; consequently, it has been postulated that MMR in vivo initiates at Okazaki fragment termini in the lagging strand and at nicks generated in the leading strand by the mismatch-activated MLH1/PMS2 endonuclease. We now show that a single ribonucleotide in the vicinity of a mismatch can act as an initiation site for MMR in human cell extracts and that MMR activation in this system is dependent on RNase H2. As loss of RNase H2 in S.cerevisiae results in a mild MMR defect that is reflected in increased mutagenesis, MMR in vivo might also initiate at RNase H2-generated nicks. We therefore propose that ribonucleotides misincoporated during DNA replication serve as physiological markers of the nascent DNA strand.


Asunto(s)
Disparidad de Par Base , Reparación de la Incompatibilidad de ADN , Reparación del ADN , Replicación del ADN/genética , ADN/genética , Ribonucleótidos/genética , Animales , Sistema Libre de Células , Células Cultivadas , ADN/metabolismo , Células HEK293 , Humanos , Ratones , Mutagénesis/genética , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 45(1): 99-110, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22244334

RESUMEN

The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.


Asunto(s)
Reparación del ADN , ADN/química , Ribonucleasa H/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Replicación del ADN , Inestabilidad Genómica , Antígeno Nuclear de Célula en Proliferación , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Ubiquitinación
3.
Mol Cell ; 40(1): 50-62, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20932474

RESUMEN

Ultraviolet (UV) light induces DNA-damage checkpoints and mutagenesis, which are involved in cancer protection and tumorigenesis, respectively. How cells identify DNA lesions and convert them to checkpoint-activating structures is a major question. We show that during repair of UV lesions in noncycling cells, Exo1-mediated processing of nucleotide excision repair (NER) intermediates competes with repair DNA synthesis. Impediments of the refilling reaction allow Exo1 to generate extended ssDNA gaps, detectable by electron microscopy, which drive Mec1 kinase activation and will be refilled by long-patch repair synthesis, as shown by DNA combing. We provide evidence that this mechanism may be stimulated by closely opposing UV lesions, represents a strategy to redirect problematic repair intermediates to alternative repair pathways, and may also be extended to physically different DNA damages. Our work has significant implications for understanding the coordination between repair of DNA lesions and checkpoint pathways to preserve genome stability.


Asunto(s)
Ciclo Celular , Cromosomas Fúngicos , Daño del ADN , Reparación del ADN , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/metabolismo , Saccharomyces cerevisiae/enzimología , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Cromosomas Fúngicos/efectos de la radiación , Cromosomas Fúngicos/ultraestructura , Reparación del ADN/efectos de la radiación , ADN de Hongos/efectos de la radiación , ADN de Hongos/ultraestructura , ADN de Cadena Simple/ultraestructura , Relación Dosis-Respuesta en la Radiación , Activación Enzimática , Exodesoxirribonucleasas/genética , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Rayos Ultravioleta
4.
Mol Cell ; 37(2): 259-72, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122407

RESUMEN

Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Meiosis , Recombinasa Rad51/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/genética , ADN de Helmintos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Recombinación Genética
5.
Hum Mol Genet ; 24(3): 649-58, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25274781

RESUMEN

Aicardi-Goutières syndrome (AGS) is an inflammatory encephalopathy caused by defective nucleic acids metabolism. Over 50% of AGS mutations affect RNase H2 the only enzyme able to remove single ribonucleotide-monophosphates (rNMPs) embedded in DNA. Ribonucleotide triphosphates (rNTPs) are incorporated into genomic DNA with relatively high frequency during normal replication making DNA more susceptible to strand breakage and mutations. Here we demonstrate that human cells depleted of RNase H2 show impaired cell cycle progression associated with chronic activation of post-replication repair (PRR) and genome instability. We identify a similar phenotype in cells derived from AGS patients, which indeed accumulate rNMPs in genomic DNA and exhibit markers of constitutive PRR and checkpoint activation. Our data indicate that in human cells RNase H2 plays a crucial role in correcting rNMPs misincorporation, preventing DNA damage. Such protective function is compromised in AGS patients and may be linked to unscheduled immune responses. These findings may be relevant to shed further light on the mechanisms involved in AGS pathogenesis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Daño del ADN , ADN/química , Inestabilidad Genómica , Malformaciones del Sistema Nervioso/genética , Ribonucleasa H/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/patología , Línea Celular , Proliferación Celular , ADN/genética , Reparación del ADN , Replicación del ADN , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Ribonucleasa H/genética , Ribonucleótidos/metabolismo
6.
PLoS Genet ; 7(3): e1002022, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21436894

RESUMEN

Following DNA damage or replication stress, budding yeast cells activate the Rad53 checkpoint kinase, promoting genome stability in these challenging conditions. The DNA damage and replication checkpoint pathways are partially overlapping, sharing several factors, but are also differentiated at various levels. The upstream kinase Mec1 is required to activate both signaling cascades together with the 9-1-1 PCNA-like complex and the Dpb11 (hTopBP1) protein. After DNA damage, Dpb11 is also needed to recruit the adaptor protein Rad9 (h53BP1). Here we analyzed the mechanisms leading to Mec1 activation in vivo after DNA damage and replication stress. We found that a ddc1Δdpb11-1 double mutant strain displays a synthetic defect in Rad53 and H2A phosphorylation and is extremely sensitive to hydroxyurea (HU), indicating that Dpb11 and the 9-1-1 complex independently promote Mec1 activation. A similar phenotype is observed when both the 9-1-1 complex and the Dpb4 non-essential subunit of DNA polymerase ε (Polε) are contemporarily absent, indicating that checkpoint activation in response to replication stress is achieved through two independent pathways, requiring the 9-1-1 complex and Polε.


Asunto(s)
ADN Polimerasa II/metabolismo , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Activación Enzimática , Mitosis/fisiología , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Rayos Ultravioleta
7.
Proc Natl Acad Sci U S A ; 108(33): 13647-52, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21808022

RESUMEN

UV light induces DNA lesions, which are removed by nucleotide excision repair (NER). Exonuclease 1 (EXO1) is highly conserved from yeast to human and is implicated in numerous DNA metabolic pathways, including repair, recombination, replication, and telomere maintenance. Here we show that hEXO1 is involved in the cellular response to UV irradiation in human cells. After local UV irradiation, fluorescent-tagged hEXO1 localizes, together with NER factors, at the sites of damage in nonreplicating cells. hEXO1 accumulation requires XPF-dependent processing of UV-induced lesions and is enhanced by inhibition of DNA repair synthesis. In nonreplicating cells, depletion of hEXO1 reduces unscheduled DNA synthesis after UV irradiation, prevents ubiquitylation of histone H2A, and impairs activation of the checkpoint signal transduction cascade in response to UV damage. These findings reveal a key role for hEXO1 in the UV-induced DNA damage response linking NER to checkpoint activation in human cells.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Exodesoxirribonucleasas/metabolismo , Rayos Ultravioleta/efectos adversos , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN , Histonas/metabolismo , Humanos , Ubiquitinación
8.
Cell Physiol Biochem ; 32(7): 238-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24429829

RESUMEN

BACKGROUND: Pendrin, an anion exchanger associated with the inner ear, thyroid and kidney, plays a significant role in respiratory tissues and diseases, where its expression is increased following IL-4 and IL-13 exposure. The mechanism leading to increased pendrin expression is in part due to binding of STAT6 to a consensus sequence (N4 GAS motif) located in the pendrin promoter. As retrospective analyses of the 5' upstream sequence of the human pendrin promoter revealed an additional N4 GAS motif (1660 base pairs upstream of the one previously identified), we set out to define its contribution to IL-4 stimulated changes in pendrin promoter activity. METHODS AND RESULTS: Electrophoretic mobility shift assays showed that STAT6 bound to oligonucleotides corresponding to both N4 GAS motifs in vitro, while dual luciferase promoter assays revealed that only one of the N4 GAS motifs was necessary for IL-4 -stimulated increases in pendrin promoter activity in living cells. We then examined the ability of STAT6 to bind each of the N4 GAS motifs in vivo with a site-specific ChIP assay, the results of which showed that STAT6 interacted with only the N4 GAS motif that was functionally implicated in increasing the activity of the pendrin promoter following IL-4 treatment. CONCLUSIONS: Of the two N4 GAS motifs located in the human pendrin promoter region analyzed in this study (nucleotides -3906 to +7), only the one located nearest to the first coding ATG participates in IL-4 stimulated increases in promoter activity.


Asunto(s)
Proteínas de Transporte de Membrana/genética , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas , Factor de Transcripción STAT6/genética , Sitios de Unión , Humanos , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/química , Unión Proteica , Factor de Transcripción STAT6/química , Transportadores de Sulfato
9.
PLoS Genet ; 6(1): e1000763, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20098491

RESUMEN

Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División del Núcleo Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS Genet ; 6(8)2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700441

RESUMEN

Saccharomyces cerevisiae Rad9 is required for an effective DNA damage response throughout the cell cycle. Assembly of Rad9 on chromatin after DNA damage is promoted by histone modifications that create docking sites for Rad9 recruitment, allowing checkpoint activation. Rad53 phosphorylation is also dependent upon BRCT-directed Rad9 oligomerization; however, the crosstalk between these molecular determinants and their functional significance are poorly understood. Here we report that, in the G1 and M phases of the cell cycle, both constitutive and DNA damage-dependent Rad9 chromatin association require its BRCT domains. In G1 cells, GST or FKBP dimerization motifs can substitute to the BRCT domains for Rad9 chromatin binding and checkpoint function. Conversely, forced Rad9 dimerization in M phase fails to promote its recruitment onto DNA, although it supports Rad9 checkpoint function. In fact, a parallel pathway, independent on histone modifications and governed by CDK1 activity, allows checkpoint activation in the absence of Rad9 chromatin binding. CDK1-dependent phosphorylation of Rad9 on Ser11 leads to specific interaction with Dpb11, allowing Rad53 activation and bypassing the requirement for the histone branch.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/genética , Daño del ADN , Dimerización , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
11.
EMBO J ; 27(10): 1502-12, 2008 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-18418382

RESUMEN

Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Proteínas de Ciclo Celular/genética , Activación Enzimática , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Metilación , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 284(47): 32627-34, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19801655

RESUMEN

Rad53 is an essential protein kinase governing DNA damage and replication stress checkpoints in budding yeast. It also appears to be involved in cellular morphogenesis processes. Mass spectrometry analyses revealed that Rad53 is phosphorylated at multiple SQ/TQ and at SP/TP residues, which are typical consensus sites for phosphatidylinositol 3-kinase-related kinases and CDKs, respectively. Here we show that Clb-CDK1 phosphorylates Rad53 at Ser(774) in metaphase. This phosphorylation event does not influence the DNA damage and replication checkpoint roles of Rad53, and it is independent of the spindle assembly checkpoint network. Moreover, the Ser-to-Asp mutation, mimicking a constitutive phosphorylation state at site 774, causes sensitivity to calcofluor, supporting a functional linkage between Rad53 and cellular morphogenesis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Ácido Aspártico/química , Separación Celular , Quinasa de Punto de Control 2 , Daño del ADN , Modelos Biológicos , Mutagénesis , Mutación , Nocodazol/farmacología , Fosforilación , Serina/química
13.
Front Cell Dev Biol ; 8: 625717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585466

RESUMEN

Symmetry breaking by cellular polarization is an exquisite requirement for the cell-cycle of Saccharomyces cerevisiae cells, as it allows bud emergence and growth. This process is based on the formation of polarity clusters at the incipient bud site, first, and the bud tip later in the cell-cycle, that overall promote bud emission and growth. Given the extreme relevance of this process, a surveillance mechanism, known as the morphogenesis checkpoint, has evolved to coordinate the formation of the bud and cell cycle progression, delaying mitosis in the presence of morphogenetic problems. The atypical protein kinase haspin is responsible for histone H3-T3 phosphorylation and, in yeast, for resolution of polarity clusters in mitosis. Here, we report a novel role for haspin in the regulation of the morphogenesis checkpoint in response to polarity insults. Particularly, we show that cells lacking the haspin ortholog Alk1 fail to achieve sustained checkpoint activation and enter mitosis even in the absence of a bud. In alk1Δ cells, we report a reduced phosphorylation of Cdc28-Y19, which stems from a premature activation of the Mih1 phosphatase. Overall, the data presented in this work define yeast haspin as a novel regulator of the morphogenesis checkpoint in Saccharomyces cerevisiae, where it monitors polarity establishment and it couples bud emergence to the G2/M cell cycle transition.

14.
Cell Discov ; 6: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595981

RESUMEN

Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis.

15.
DNA Repair (Amst) ; 7(6): 941-50, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18472307

RESUMEN

DNA interstrand cross-links (ICLs) are highly cytotoxic DNA lesions hindering DNA replication and transcription. Whereas in bacteria and yeast the molecular mechanisms involved in ICL repair are genetically well dissected, the scenario in multicellular organisms remains unclear. Here, we report that the two new mus308 genes, polq-1 and hel-308 are involved in ICL repair in Caenorhabditis elegans. After treatment with ICL agents, a decrease in survival and an increase in checkpoint-induced cell-cycle arrest and apoptosis of germ cells is observed in mutants of both genes. Although sensitive to ICL agents and to a minor extent to IR, cytological and epistatic analyses suggest that polq-1 and hel-308 are involved in different DNA repair pathways. While hel-308 functions in a Fanconi anemia-dependent pathway, polq-1 has a role in a novel distinct and brc-1 (CeBRCA1)-dependent ICL repair process in metazoans.


Asunto(s)
Caenorhabditis elegans/enzimología , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Cartilla de ADN , Reacción en Cadena de la Polimerasa , Interferencia de ARN , ADN Polimerasa theta
16.
DNA Repair (Amst) ; 6(1): 121-7, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17035102

RESUMEN

Translesion DNA synthesis (TLS) is one of the mechanisms involved in lesion bypass during DNA replication. Three TLS polymerases (Pol) are present in the yeast Saccharomyces cerevisiae: Pol zeta, Pol eta and the product of the REV1 gene. Rev1 is considered a deoxycytidyl transferase because it almost exclusively inserts a C residue in front of the lesion. Even though REV1 is required for most of the UV-induced and spontaneous mutagenesis events, the role of Rev1 is poorly understood since its polymerase activity is often dispensable. Rev1 interacts with several TLS polymerases in mammalian cells and may act as a platform in the switching mechanism required to substitute a replicative polymerase with a TLS polymerase at the sites of DNA lesions. Here we show that yeast Rev1 is a phosphoprotein, and the level of this modification is cell cycle regulated under normal growing conditions. Rev1 is unphosphorylated in G1, starts to be modified while cells are passing S phase and it becomes hyper-phosphorylated in mitosis. Rev1 is also hyper-phosphorylated in response to a variety of DNA damaging agents, including treatment with a radiomimetic drug mostly causing double-strand breaks (DSB). By using the chromosome spreading technique we found the Rev1 is bound to chromosomes throughout the cell cycle, and its binding does not significantly increase in response to genotoxic stress. Therefore, Rev1 phosphorylation does not appear to modulate its binding to chromosomes, suggesting that such modification may influence other aspects of the TLS process. Rev1 binding under damaged and undamaged conditions, is at least partially dependent on MEC1, a gene playing a pivotal role in the DNA damage checkpoint cascade. This genetic dependency may suggest a role for MEC1 in spontaneous mutagenesis events, which require a functional REV1 gene.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Daño del ADN , Fase G1/genética , Nucleotidiltransferasas/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Reparación del ADN , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN , Péptidos y Proteínas de Señalización Intracelular , Mitosis , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Methods Mol Biol ; 1672: 101-105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043619

RESUMEN

The local UV irradiation technique enables detection, kinetic measurements of recruitment, and quantification of DNA Damage Response (DDR) proteins at the site of UV-induced DNA damage.Using Isopore filters with high density pores of a broad range of sizes, it is possible to UV irradiate and damage only a very small portion of the nucleus of a cell by letting UV light pass only through the pores. Immunofluorescent analyses of modified DNA nucleotides, proteins, or fluorescently tagged versions of target factors can be used as markers to label and study UV-induced lesions and their repair.


Asunto(s)
Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Rayos Ultravioleta , Técnica del Anticuerpo Fluorescente , Microscopía Fluorescente , Unión Proteica
18.
Methods Mol Biol ; 1672: 319-327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29043633

RESUMEN

Ribonucleotides (rNTPs) are incorporated into genomic DNA at a relatively high frequency during replication. They have beneficial effects but, if not removed from the chromosomes, increase genomic instability. Here, we describe a fast method to easily estimate the amounts of embedded ribonucleotides into the genome. The protocol described is performed in Saccharomyces cerevisiae and allows us to quantify altered levels of rNMPs due to different mutations in the replicative polymerase ε. However, this protocol can be easily applied to cells derived from any organism.


Asunto(s)
ADN , Genoma , Genómica , Ribonucleótidos , ADN/aislamiento & purificación , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Genómica/métodos , Marcaje Isotópico , Ribonucleasa H/metabolismo
19.
Ital J Biochem ; 56(2): 141-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17722655

RESUMEN

Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.


Asunto(s)
Ciclo Celular , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , Ciclo Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/efectos de la radiación , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Rayos Ultravioleta/efectos adversos
20.
DNA Repair (Amst) ; 3(12): 1591-9, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15474420

RESUMEN

The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Reparación del ADN/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Rayos Ultravioleta , Proteínas de Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN , ADN de Hongos/metabolismo , ADN de Hongos/efectos de la radiación , Proteínas de Unión al ADN , Fase G1/genética , Fase G1/fisiología , Fase G2/genética , Fase G2/fisiología , Interfase/genética , Interfase/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Fosforilación , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia/genética , Agua/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA