RESUMEN
We present a divergent synthetic approach to C2-symmetrical 3,4-Ethylenedioxythiophene (EDOT) monomers in which functionalities can be introduced as pendant chains from the ethylene bridge. The key synthon, obtained through a high yielding trans-etherification, is the chiral EDOT with bromomethyl pendant groups and is prone to substitution reactions with oxygen-based nucleophiles. Elimination of the key precursor affords a diene that can be elaborated into unprecedented PhEDOT monomers using the Diels-Alder reaction. The strategy is further validated by the synthesis of a dithiane-containing EDOT.
RESUMEN
The regioselective nitration of 9,9'-spirobifluorene under mild conditions is reported for the first time by operating under Menke's and Crivello's conditions. The optimized protocol allows obtaining 2-nitro and 2,2'-dinitro-9,9'-spirobifluorene in yields of 79 and 95% and, for the first time, 2,2',7-trinitro-9,9'-spirobifluorene with 66% yield. Besides, the role of dinitrate salt in Crivello's protocol has been now clarified, which opens novel scenarios in the preparation of functional materials.
RESUMEN
Organic photovoltaics (OPVs) have attracted tremendous attention in the field of thin-film solar cells due to their wide range of applications, especially for semitransparent devices. Here, we synthesize a dithiaindacenone-thiophene-benzothiadiazole-thiophene alternating donor copolymer named poly{[2,7-(5,5-didecyl-5H-1,8-dithia-as-indacenone)]-alt-[5,5-(5',6'-dioctyloxy-4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]} (PDTIDTBT), which shows a relatively wide bandgap of 1.82 eV, good mobility, and high transmittance and ambient stability. In this work, we fabricate an OPV device using monolayer graphene as top electrode. Due to the stability of PDTIDTBT in air and water, we use a wet transfer technique for graphene to fabricate semitransparent OPVs. We demonstrate OPVs based on the PDTIDTBT:Phenyl-C61/71-butyric acid methyl ester (PCBM) blend with maximum power conversion efficiencies (PCEs) of 6.1 and 4.75% using silver and graphene top electrodes, respectively. Our graphene-based device shows a high average visible transmittance (AVT) of 55%, indicating the potential of PDTIDTBT for window application and tandem devices. Therefore, we also demonstrate tandem devices using the PDTIDTBT:Phenyl-C61-butyric acid methyl ester (PC60BM) blend in both series and parallel connections with average PCEs of 7.3 and 7.95%, respectively. We also achieve a good average PCE of 8.26% with an average open circuit voltage (Voc) of 1.79 V for 2-terminal tandem OPVs using this blend. Based on tandem design, an OPV with PCE of 6.45% and AVT of 38% is demonstrated. Moreover, our devices show improved shelf life and ultraviolet (UV) stability (using CdSe/ZnS core shell quantum dots [QDs]) in ambient with 45% relative humidity.
RESUMEN
The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.
Asunto(s)
Suministros de Energía Eléctrica , Fulerenos/química , Procesos Fotoquímicos , Energía Solar , HumanosRESUMEN
Low carrier mobility and lifetime in semiconductor polymers are some of the main challenges facing the field of organic photovoltaics (OPV) in the quest for efficient devices with high current density. Finding novel strategies such as device structure engineering is a key pathway toward addressing this issue. In this work, the light absorption and carrier collection of OPV devices are improved by employment of ZnO nanowire (NW) arrays with an optimum NW length (50 nm) and antireflection (AR) film with nanocone structure. The optical characterization results show that ZnO NW increases the transmittance of the electron transporting layer as well as the absorption of the polymer blend. Moreover, the as-deposited polymer blend on the ZnO NW array shows better charge transfer as compared to the planar sample. By employing PC70BM:PV2000 as a promising air-stable active-layer, power conversion efficiencies of 9.8% and 10.1% are achieved for NW devices without and with an AR film, indicating 22.5% and 26.2% enhancement in PCE as compared to that of planar device. Moreover, it is shown that the AR film enhances the water-repellent ability of the OPV device.
RESUMEN
Polymorphism and related solid-state phase transitions affect the structure and morphology and hence the properties of materials, but they are not-so-well understood. Atomistic computational methods can provide molecular-level insights, but they have rarely proven successful for transitions between polymorphic forms of crystalline polymers. In this work, we report atomistic molecular dynamics (MD) simulations of poly(3-alkylthiophenes) (P3ATs), widely used organic semiconductors to explore the experimentally observed, entropy-driven transition from form II to more common form I type polymorphs, or, more precisely, to form I mesophases. The transition is followed continuously, also considering X-ray diffraction evidence, for poly(3-hexylthiophene) (P3HT) and poly(3-butylthiophene) (P3BT), evidencing three main steps: (i) loss of side chain interdigitation, (ii) partial disruption of the original stacking order and (iii) reorganization of polymer chains into new, tighter, main-chain stacks and new layers with characteristic form I periodicities, substantially larger than those in the original form II. The described approach, likely applicable to other important transitions in polymers, provides previously inaccessible insight into the structural organization and disorder features of form I structures of P3ATs, not only in their development from form II structures but also from melts or solutions.
RESUMEN
Five-membered aromatic heterocycles are a ubiquitous skeleton of π-conjugated organic compounds, and their incorporation requires synthetic protocols that are not easily industrially sustainable or scalable. Improved methodologies for their insertion into π-scaffolds are therefore necessary. We report an efficient and scalable protocol involving a one-pot cross-Aldol direct arylation reaction protocol for the rapid construction of thiophene- and furan-based π-extended organic materials.
RESUMEN
We report on the design, synthesis, and properties of innovative, planar, π-conjugated compounds in which a thiophene ring is fused with the skeleton of the naturally occurring dye isatin. The synthesis is achieved in high yields making use of an intramolecular direct arylation reaction as the key step, making the overall process potentially scalable. The synthetic sequence has been demonstrated also for an isatin bearing fluorine substituents on the aromatic ring. NMR and X-ray studies demonstrate the crosstalk occurring between the fused, coplanar, and conjugated moieties, making these novel dyes with a donor-acceptor character. Cyclic voltammetry and UV-vis studies confirm very interesting HOMO-LUMO levels and energy gaps for the new compounds.
RESUMEN
π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance, bearing clear advantages over traditional carbon-carbon forming methodologies. Although their use in the final polymerization step is already established, there is a need for improving synthetic accessibility to implement them also in the monomer synthesis. In this review, we discuss recent examples highlighting this useful strategy.
Asunto(s)
Carbono/química , Furanos/química , Cloruro de Metileno/química , Polímeros/síntesis química , Tiadiazoles/química , Tiofenos/química , Catálisis , Técnicas Electroquímicas , Humanos , Paladio/química , Polimerizacion , Energía SolarRESUMEN
State-of-the-art organic solar cells mostly rely on bulk-heterojunction architectures, where the photoactive layer is cast from a solution containing both the electron donor and acceptor components and subsequently annealed. An alternative route for device preparation is the sequential deposition of the two components using "orthogonal" solvents. The morphology of sequentially deposited bilayers has been extensively studied, but the interplay between optical and electrical properties and its influence on device efficiency is still unclear. Here we present a study of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bilayers with variable P3HT content, including also a standard bulk-heterojunction device for comparison. Measured optical absorption, external quantum efficieny (EQE), and internal quantum efficiency (IQE) data are analysed and interpreted with the aid of numerical models. In agreement with other studies, our results suggest substantial intermixing between the PCBM and P3HT component, regardless of the P3HT content. In the bulk heterojunction and the bilayer devices with an active layer thickness of 100 nm or less, our best fits to both the optical and optoelectronic data highlight a concentration inversion, with an accumulation of PCBM on the anode side. Through the numerical analysis of device performance at short-circuit, we also find that exciton diffusion toward the P3HT:PCBM interface and geminate recombination can be the main IQE loss factors. Additional losses, attributed to bimolecular electron-hole recombination, are also observed upon increasing the P3HT content.
RESUMEN
In order to move towards large-scale fabrication, perovskite solar cells need to detach themselves from strictly controlled environmental conditions and, to this end, fabrication in ambient air is highly desirable. Formamidinium iodide perovskite (FAPI) is one of the most promising perovskites but is also unstable at room temperature, which may make the ambient air deposition more difficult. Herein, we investigated different formulations of pure FAPI for the fabrication of perovskite solar cells (PSCs) in air. We found that formulations using a mixture of N,N-Dimethylformamide (DMF): N-methyl-2-pyrrolidone (NMP) and only dimethyl sulfoxide (DMSO) are suitable for the deposition in air. To fabricate inverted p-i-n solar cells, we tested different hole transporting layers (HTLs) and observed the effects on the wettability of the perovskite solution and on the performance. A self-assembly monolayer of 2PACz (2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) was found to be the best option as a HTL, allowing us to achieve efficiencies >15% on both FTO and ITO.
RESUMEN
Formamidinium lead iodide (FAPI) represents the most promising perovskite for single junction solar cells, exhibiting an impressive performance when deposited in a controlled nitrogen environment. In order to foster the real-world application of this technology, the deposition of FAPI in ambient air is a highly desirable prospect, as it would reduce fabrication costs. This study demonstrates that the wettability of FAPI precursors on the hole transporting layers (HTL) used to fabricate inverted p-i-n solar cells is extremely poor in ambient air, hampering the realization of a perovskite active layer with good optoelectronic quality. To address this issue, herein, a double compatibilization method is developed, which results in the attainment of remarkable performance, exceeding 21%, representing one of the highest reported efficiencies for FAPI solar cells fabricated in humid ambient air. The incorporation of a small quantity of anionic surfactant, comprising a hydrocarbon tail and a polar headgroup, sodium dodecyl sulfate (SDS), in the perovskite solution and an ultrathin layer of alumina nanoparticles on the HTL, results in a significant improvement in the wettability of the FAPI solution. This enables the reproducible deposition of highly homogeneous perovskite films with complete coverage and excellent optical and optoelectronic quality. Furthermore, devices based on FAPI with SDS exhibit enhanced stability, retaining 98% of their initial efficiency after 40 h of continuous illumination.
RESUMEN
Layered Structures of Metal Ionic Polymers, or Ionic Polymer-Metal Composites (IPMCs) are formed by a membrane of an ionic electroactive materials flanked by two metal electrodes on both surfaces; they are devices able to change their shape upon application of an electrical external stimulus. This class of materials is used in various fields such as biomedicine, soft robotics, and sensor technology because of their favorable properties (light weight, biocompatibility, fast response to stimulus and good flexibility). With additive manufacturing, actuators can be customized and tailored to specific applications, allowing for the optimization of performance, size, and weight, thus reducing costs and time of fabrication and enhancing functionality and efficiency in various applications. In this review, we present an overview of the newest trend in using different 3D printing techniques to produce electrically responsive IPMC devices.
RESUMEN
Hexasubstituted benzenes are interesting platforms for the generation of functional materials, whose applications span from supramolecular recognition to organic electronics. Their synthesis is difficult to achieve by controlling multiple substitution steps of all hydrogen atoms on the aromatic benzene skeleton, so, often, cycloaddition reactions from disubsituted alkynes are used. In this work, we report a novel, straightforward route to C3-symmetrical hexasubstituted aromatic synthons with a diverse and rich pattern of functionalities, and we report about their packing mode in the crystals, in which, unprecedentedly, directional, strong halogen bonding interactions are capable of forming bidimensional supramolecular weaving.
RESUMEN
Organic photovoltaics (OPV) has been considered for a long time a promising emerging solar technology. Currently, however, market shares of OPV are practically non-existent. A detailed meta-analysis of the literature published until mid-2021 is presented, focusing on one of the remaining issues that need to be addressed to translate the recent remarkable progress, obtained in devices' performance at lab-scale level, into the requirements able to boost the manufacturing-scale production. Namely, the active layer's thickness is referred to, which, together with device efficiency and stability, represents one of the biggest challenges of this technological research field. Papers describing solar cells containing non-fullerene acceptor (NFA) binary and ternary blends, as well as NFA plus fullerene acceptor (FA) ternary blends are reviewed. The common ground of all analyzed devices is their high-thickness active layers, compatible with large-area deposition techniques. By defining a new figure of merit to discuss the OPV thickness (thickness tolerance, TT), it is found that this parameter is not affected by the chemical family's nature of the active blend components. On the other hand, the analysis suggests that there are promising strategies to improve the TT, which are discussed in the conclusion section.
RESUMEN
We synthetized a new rod-coil block copolymer (BCP) based on the semiconducting polymerpoly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and poly-4-vinylpyridine (P4VP), tailored to produce water-processable nanoparticles (WPNPs) in blend with phenyl-C71-butyric acid methyl ester (PC71BM). The copolymer PTB7-b-P4VP was completely characterized by means of two-dimensional nuclear magnetic resonance (2D-NMR), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS), size-exclusion chromatography (SEC), and differential scanning calorimetry (DSC) to confirm the molecular structure. The WPNPs were prepared through an adapted miniemulsion approach without any surfactants. Transmission electron microscopy (TEM) images reveal the nano-segregation of two active materials inside the WPNPs. The nanostructures appear spherical with a Janus-like inner morphology. PTB7 segregated to one side of the nanoparticle, while PC71BM segregated to the other side. This morphology was consistent with the value of the surface energy obtained for the two active materials PTB7-b-P4VP and PC71BM. The WPNPs obtained were deposited as an active layer of organic solar cells (OSCs). The films obtained were characterized by UV-Visible Spectroscopy (UV-vis), atomic force microscopy (AFM), and grazing incidence X-ray diffraction (GIXRD). J-V characteristics of the WPNP-based devices were measured by obtaining a power conversion efficiency of 0.85%. Noticeably, the efficiency of the WPNP-based devices was higher than that achieved for the devices fabricated with the PTB7-based BCP dissolved in chlorinated organic solvent.
RESUMEN
The industrialization of perovskite solar cells relies on solving intrinsic-to-material issues. To reach record efficiencies perovskite deposition needs to be finely adjusted by multi-step processes, in a humidity free glove-box environment and by means of hardly scalable techniques often associated with toxic solvents and anti-solvent dripping/bath. Herein, the use of polymeric material is proposed to deposit perovskite layers with easy processability. To the scope, a starch-polymer/perovskite composite is developed to suit slot-die coating technique requirement, allowing the deposition of hybrid halide perovskite material in a single straightforward step without the use of toxic solvents, and in uncontrolled humid environment (RH up to 70 %). The starch-polymer increases the viscosity of the perovskite precursor solutions and delays the perovskite crystallization that results in the formation of perovskite films at mild temperature (60 °C) with good morphology. These innovative inks enables the fabrication of flexible solar cells with p-i-n configuration featured by a power conversion efficiency higher than 3 %. . Overall, this approach can be exploited in the future to massively reduce perovskite manufacturing costs related to keeping the entire fabrication line at high-temperature and under nitrogen or dry conditions.
RESUMEN
The kinetic Monte Carlo (KMC) method provides a versatile tool to investigate the mechanisms underlying photocurrent generation in nanostructured organic solar cells. Currently available algorithms can already support the development of more cost-efficient photovoltaic devices, but so far no attempt has been made to test the validity of some fundamental model assumptions and their impact on the simulation result. A meaningful example is given by the treatment of the electrostatic interactions. In most KMC models, electrostatic interactions are approximated by means of cutoff based potentials, irrespective of the long-range nature of the Coulomb interaction. In this paper, the reliability of such approximation is tested against the exact Ewald sum. The results under short-circuit and flat-band conditions show that use of cutoff-based potentials tends to underestimate real device performance, in terms of internal quantum efficiency and current density. Together with this important finding, we formalize other methodological aspects which have been scarcely discussed in the literature.
RESUMEN
We demonstrate the broad applicability of the annulation protocol combining, in one pot, a direct arylation and cross aldol condensation for the straightforward synthesis at gram-scale of π-extended thiophene-based scaffolds. The regiospecific direct arylation drives the subsequent cross-aldol condensation proceed under the same basic conditions, and the overall protocol has broad applicability in the synthesis of extended aromatics wherein the thiophene ring is annulated with furans, pyridines, indoles, benzothiophenes, and benzofurans. These scaffolds can be further elaborated into π-extended, highly fluorescent oligomers with a central deficient benzothiadiazole unit with up to nine aromatic rings through coupling reactions.
RESUMEN
Understanding the phenomena at interfaces is crucial for producing efficient and stable flexible organic solar cell modules. Minimized energy barriers enable efficient charge transfer, and good adhesion allows mechanical and environmental stability and thus increased lifetime. We utilize here the inverted organic solar module stack and standard photoactive materials (a blend of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester) to study the interfaces in a pilot scale large-area roll-to-roll (R2R) process. The results show that the adhesion and work function of the zinc oxide nanoparticle based electron transport layer can be controlled in the R2R process, which allows optimization of performance and lifetime. Plasma treatment of zinc oxide (ZnO) nanoparticles and encapsulation-induced oxygen trapping will increase the absolute value of the ZnO work function, resulting in energy barriers and an S-shaped IV curve. However, light soaking will decrease the zinc oxide work function close to the original value and the S-shape can be recovered, leading to power conversion efficiencies above 3%. We present also an electrical simulation, which supports the results. Finally, we study the effect of plasma treatment in more detail and show that we can effectively remove the organic ligands around the ZnO nanoparticles from the printed layer in a R2R process, resulting in increased adhesion. This postprinting plasma treatment increases the lifetime of the R2R printed modules significantly with modules retaining 80% of their efficiency for â¼3000 h in accelerated conditions. Without plasma treatment, this efficiency level is reached in less than 1000 h.