Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Genomics ; 23(1): 175, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35240994

RESUMEN

BACKGROUND: Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species. RESULTS: In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe. CONCLUSIONS: Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation.


Asunto(s)
Ascomicetos , Transcriptoma , Ascomicetos/fisiología , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
J Exp Bot ; 73(13): 4546-4561, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35167679

RESUMEN

Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.


Asunto(s)
Bryopsida , Factores de Transcripción , Bryopsida/genética , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Mol Biol ; 107(4-5): 365-385, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33521880

RESUMEN

KEY MESSAGE: Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.


Asunto(s)
Bryopsida/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Plantas/genética , Botrytis/fisiología , Bryopsida/microbiología , Ontología de Genes , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/microbiología , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
4.
Plant J ; 95(1): 168-182, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681058

RESUMEN

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Asunto(s)
Bryopsida/genética , Conjuntos de Datos como Asunto , Genes de Plantas/genética , Mapeo Cromosómico , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética
5.
Plant Cell ; 28(6): 1328-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27268428

RESUMEN

MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMPs). This pathway induces rapid growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. Two P. patens MPKs (MPK4a and MPK4b) are phosphorylated and activated in response to PAMPs. This activation in response to the fungal PAMP chitin requires a chitin receptor and one or more MAP kinase kinase kinases and MAP kinase kinases. Knockout lines of MPK4a appear wild type but have increased susceptibility to the pathogenic fungi Botrytis cinerea and Alternaria brassisicola Both PAMPs and osmotic stress activate some of the same MPKs in Arabidopsis. In contrast, abscisic acid treatment or osmotic stress of P. patens does not activate MPK4a or any other MPK, but activates at least one SnRK2 kinase. Signaling via MPK4a may therefore be specific to immunity, and the moss relies on other pathways to respond to osmotic stress.


Asunto(s)
Bryopsida/inmunología , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad Innata/fisiología , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/inmunología , Botrytis/patogenicidad , Bryopsida/efectos de los fármacos , Bryopsida/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Inmunidad Innata/genética , Presión Osmótica/efectos de los fármacos , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Fosforilación/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 16(9): 22280-98, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26389888

RESUMEN

The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to ß-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.


Asunto(s)
Ascomicetos/patogenicidad , Briófitas/microbiología , Inmunidad de la Planta , Briófitas/inmunología , Pared Celular/metabolismo , Cloroplastos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Curr Opin Plant Biol ; 77: 102450, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37704543

RESUMEN

Land plants (embryophytes), including vascular (tracheophytes) and non-vascular plants (bryophytes), co-evolved with microorganisms since descendants of an algal ancestor colonized terrestrial habitats around 500 million years ago. To cope with microbial pathogen infections, embryophytes evolved a complex immune system for pathogen perception and activation of defenses. With the growing number of sequenced genomes and transcriptome datasets from algae, bryophytes, tracheophytes, and available plant models, comparative analyses are increasing our understanding of the evolution of molecular mechanisms underpinning immune responses in different plant lineages. In this review, recent progress on plant immunity networks is highlighted with emphasis on the identification of key components that shaped immunity against pathogens in bryophytes compared to angiosperms during plant evolution.


Asunto(s)
Briófitas , Embryophyta , Evolución Biológica , Filogenia , Plantas/genética , Embryophyta/fisiología , Evolución Molecular
8.
Int J Mol Sci ; 14(2): 3178-200, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23380962

RESUMEN

During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.

9.
Sci Rep ; 13(1): 13061, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567886

RESUMEN

Soybean stem canker (SSC) caused by the fungal pathogen Diaporthe caulivora is an important disease affecting soybean production worldwide. However, limited information related to the molecular mechanisms underlying soybean resistance to Diaporthe species is available. In the present work, we analyzed the defense responses to D. caulivora in the soybean genotypes Williams and Génesis 5601. The results showed that compared to Williams, Génesis 5601 is more resistant to fungal infection evidenced by significantly smaller lesion length, reduced disease severity and pathogen biomass. Transcriptional profiling was performed in untreated plants and in D. caulivora-inoculated and control-treated tissues at 8 and 48 h post inoculation (hpi). In total, 2.322 and 1.855 genes were differentially expressed in Génesis 5601 and Williams, respectively. Interestingly, Génesis 5601 exhibited a significantly higher number of upregulated genes compared to Williams at 8 hpi, 1.028 versus 434 genes. Resistance to D. caulivora was associated with defense activation through transcriptional reprogramming mediating perception of the pathogen by receptors, biosynthesis of phenylpropanoids, hormone signaling, small heat shock proteins and pathogenesis related (PR) genes. These findings provide novel insights into soybean defense mechanisms leading to host resistance against D. caulivora, and generate a foundation for the development of resistant SSC varieties within soybean breeding programs.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Genotipo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Transcripción Genética
10.
Front Plant Sci ; 13: 908682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186018

RESUMEN

APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.

11.
J Fungi (Basel) ; 7(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34436216

RESUMEN

Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.

12.
Plants (Basel) ; 10(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34371683

RESUMEN

Marchantia polymorpha L. responds to environmental changes using a myriad set of physiological responses, some unique to the lineage related to the lack of a vascular- and root-system. This study investigates the physiological response of M. polymorpha to high doses of anthracene analysing the antioxidant enzymes and their relationship with the photosynthetic processes, as well as their transcriptomic response. We found an anthracene dose-dependent response reducing plant biomass and associated to an alteration of the ultrastructure of a 23.6% of chloroplasts. Despite a reduction in total thallus-chlorophyll of 31.6% of Chl a and 38.4% of Chl b, this was not accompanied by a significant change in the net photosynthesis rate and maximum quantum efficiency (Fv/Fm). However, we found an increase in the activity of main ROS-detoxifying enzymes of 34.09% of peroxidase and 692% of ascorbate peroxidase, supported at transcriptional level with the upregulation of ROS-related detoxifying responses. Finally, we found that M. polymorpha tolerated anthracene-stress under the lowest concentration used and can suffer physiological alterations under higher concentrations tested related to the accumulation of anthracene within plant tissues. Our results show that M. polymorpha under PAH stress condition activated two complementary physiological responses including the activation of antioxidant mechanisms and the accumulation of the pollutant within plant tissues to mitigate the damage to the photosynthetic apparatus.

13.
Plant Physiol ; 151(3): 1421-32, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759339

RESUMEN

Plant alpha-dioxygenases initiate the synthesis of oxylipins by catalyzing the incorporation of molecular oxygen at the alpha-methylene carbon atom of fatty acids. Previously, alpha-DOX1 has been shown to display alpha-dioxygenase activity and to be implicated in plant defense. In this study, we investigated the function of a second alpha-dioxygenase isoform, alpha-DOX2, in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). Recombinant Slalpha-DOX2 and Atalpha-DOX2 proteins catalyzed the conversion of a wide range of fatty acids into 2(R)-hydroperoxy derivatives. Expression of Slalpha-DOX2 and Atalpha-DOX2 was found in seedlings and increased during senescence induced by detachment of leaves. In contrast, microbial infection, earlier known to increase the expression of alpha-DOX1, did not alter the expression of Slalpha-DOX2 or Atalpha-DOX2. The tomato mutant divaricata, characterized by early dwarfing and anthocyanin accumulation, carries a mutation at the Slalpha-DOX2 locus and was chosen for functional studies of alpha-DOX2. Transcriptional changes in such mutants showed the up-regulation of genes playing roles in lipid and phenylpropanoid metabolism, the latter being in consonance with the anthocyanin accumulation. Transgenic expression of Atalpha-DOX2 and Slalpha-DOX2 in divaricata partially complemented the compromised phenotype in mature plants and fully complemented it in seedlings, thus indicating the functional exchangeability between alpha-DOX2 from tomato and Arabidopsis. However, deletion of Atalpha-DOX2 in Arabidopsis plants did not provoke any visible phenotypic alteration indicating that the relative importance of alpha-DOX2 in plant physiology is species specific.


Asunto(s)
Dioxigenasas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Arabidopsis/genética , Clonación Molecular , Dioxigenasas/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN de Planta/genética , Plantones/genética , Plantones/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
14.
J Fungi (Basel) ; 7(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379257

RESUMEN

Botrytis cinerea is a necrotrophic pathogen that causes grey mold in many plant species, including crops and model plants of angiosperms. B. cinerea also infects and colonizes the bryophyte Physcomitrium patens (previously Physcomitrella patens), which perceives the pathogen and activates defense mechanisms. However, these defenses are not sufficient to stop fungal invasion, leading finally to plant decay. To gain more insights into B. cinerea infection and virulence strategies displayed during moss colonization, we performed genome wide transcriptional profiling of B. cinerea during different infection stages. We show that, in total, 1015 B. cinerea genes were differentially expressed in moss tissues. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that infection of P. patens tissues by B. cinerea depends on reactive oxygen species generation and detoxification, transporter activities, plant cell wall degradation and modification, toxin production and probable plant defense evasion by effector proteins. Moreover, a comparison with available RNAseq data during angiosperm infection, including Arabidopsis thaliana, Solanum lycopersicum and Lactuca sativa, suggests that B. cinerea has virulence and infection functions used in all hosts, while others are more specific to P. patens or angiosperms.

15.
Planta ; 230(3): 569-79, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19551405

RESUMEN

The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, very little is known about the defense mechanisms activated in this moss after pathogen assault. In this study, we show that P. patens activated multiple and similar responses against Pythium irregulare and Pythium debaryanum, including the reinforcement of the cell wall, induction of the defense genes CHS, LOX and PAL, and accumulation of the signaling molecules jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (OPDA). However, theses responses were not sufficient and infection could not be prevented leading to hyphae colonization of moss tissues and plant decay. Pythium infection induced reactive oxygen species production and caused cell death of moss tissues. Taken together, these data indicate that Pythium infection activates in P. patens common responses to those previously characterized in flowering plants. Microscopic analysis also revealed intracellular relocation of chloroplasts in Pythium-infected tissues toward the infection site. In addition, OPDA, JA and its methyl ester methyl jasmonate induced the expression of PAL. Our results show for the first time JA and OPDA accumulation in a moss and suggest that this defense pathway is functional and has been maintained during the evolution of plants.


Asunto(s)
Briófitas/fisiología , Pythium/patogenicidad , Briófitas/microbiología , ADN de Plantas/genética , Reguladores del Crecimiento de las Plantas/fisiología
16.
Front Plant Sci ; 10: 1733, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117332

RESUMEN

Soybean is an important crop in South America, and its production is limited by fungal diseases caused by species from the genus Diaporthe, including seed decay, pod and stem blight, and soybean stem canker (SSC). In this study, we focused on Diaporthe species isolated from soybean plants with SSC lesions in different parts of Uruguay. Diaporthe diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA and a partial region of the translation elongation factor 1-alpha gene (TEF1α). Phylogenetic analysis showed that the isolates belong to five defined groups of Diaporthe species, Diaporthe caulivora and Diaporthe longicolla being the most predominant species present in stem canker lesions. Due to the importance of D. caulivora as the causal agent of SSC in the region and other parts of the world, we further characterized the interaction of this pathogen with soybean. Based on genetic diversity of D. caulivora isolates evaluated with inter-sequence single repetition (ISSR), three different isolates were selected for pathogenicity assays. Differences in virulence were observed among the selected D. caulivora isolates on susceptible soybean plants. Further inspection of the infection and colonization process showed that D. caulivora hyphae are associated with trichomes in petioles, leaves, and stems, acting probably as physical adhesion sites of the hyphae. D. caulivora colonized the stem rapidly reaching the phloem and the xylem at 72 h post-inoculation (hpi), and after 96 hpi, the stem was heavily colonized. Infected soybean plants induce reinforcement of the cell walls, evidenced by incorporation of phenolic compounds. In addition, several defense genes were induced in D. caulivora-inoculated stems, including those encoding a pathogenesis-related protein-1 (PR-1), a PR-10, a ß-1,3-glucanase, two chitinases, two lipoxygenases, a basic peroxidase, a defensin, a phenylalanine-ammonia lyase, and a chalcone synthase. This study provides new insights into the interaction of soybean with D. caulivora, an important pathogen causing SSC, and provides information on the activation of plant defense responses.

17.
PLoS One ; 13(11): e0207438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30440039

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that exhibit ectodomains containing the domain of unknown function 26 (DUF26). The CRKs form a large subfamily of receptor-like kinases in plants, and their possible functions remain to be elucidated. Several lines of evidence suggest that CRKs play important roles in plant defense responses to environmental stress, including plant immunity. We performed a genome-wide analysis of CRK encoding genes in soybean (Glycine max). We found 91 GmCRKs distributed in 16 chromosomes, and identified several tandem and segmental duplications, which influenced the expansion of this gene family. According to our phylogenetic analysis, GmCRKs are grouped in four clades. Furthermore, 12% of the members exhibited GmCRKs with a duplicated bi-modular organization of the ectodomains, containing four DUF26 domains. Expression analysis of GmCRKs was performed by exploring publicly available databases, and by RT-qPCR analysis of selected genes in soybean leaves responding to biotic stress signals. GmCRKs exhibited diverse expression patterns in leaves, stems, roots, and other tissues. Some of them were highly expressed in only one type of tissue, suggesting predominant roles in specific tissues. Furthermore, several GmCRKs were induced with PAMPs, DAMPs and the pathogens Phakopsora pachyrhizi and Phytophthora sojae. Expression profiles of several GmCRKs encoding highly similar proteins exhibited antagonist modes of regulation. The results suggest a fine-tuning control of GmCRKs transcriptional regulation in response to external stimuli, including PAMPs and DAMPs. This study offers a comprehensive view of the GmCRKs family in soybean, and provides a foundation for evolutionary and functional analysis of this family of plant proteins involved in the perception of pathogens and activation of plant immunity.


Asunto(s)
Glycine max/genética , Filogenia , Inmunidad de la Planta/genética , Proteínas Quinasas/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Genoma de Planta/genética , Genoma de Planta/inmunología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Proteínas Quinasas/inmunología , Glycine max/crecimiento & desarrollo , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología
18.
BMC Plant Biol ; 7: 52, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17922917

RESUMEN

BACKGROUND: Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i) whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora) and Botrytis cinerea (B. cinerea), could infect Physcomitrella, and ii) whether B. cinerea, elicitors of a harpin (HrpN) producing E.c. carotovora strain (SCC1) or a HrpN-negative strain (SCC3193), could cause disease symptoms and induce defense responses in Physcomitrella. RESULTS: B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1)), resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193) produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1) or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. CONCLUSION: B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B. cinerea induce this type of cell death in vascular plants, our results suggest that E.c. carotovora CFSCC1 containing HrpN and B. cinerea could also induce this type of cell death in Physcomitrella. Our studies thus establish Physcomitrella as an experimental host for investigation of plant-pathogen interactions and B. cinerea and elicitors of E.c. carotovora as promising tools for understanding the mechanisms involved in defense responses and in pathogen-mediated cell death in this simple land plant.


Asunto(s)
Botrytis/fisiología , Bryopsida/inmunología , Bryopsida/microbiología , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Bryopsida/citología , Bryopsida/genética , Muerte Celular , Cloroplastos/metabolismo , Citoplasma/microbiología , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Front Plant Sci ; 8: 366, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360923

RESUMEN

Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.

20.
Lipids ; 41(5): 499-506, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16933794

RESUMEN

3-Oxalinolenic acid (3-oxa-9(Z),12(Z),15(Z)-octadecatrienoic acid or (6(Z),9(Z),12(Z)-pentadecatrienyloxy)acetic acid) was synthesized from 5(Z),8(Z),11(Z),14(Z),17(Z)-eicosapentaenoic acid by a sequence involving the C15 aldehyde 3(Z),6(Z),9(Z),12(Z)-pentadecatetraenal as a key intermediate. Conversion of the aldehyde by isomerization and two steps of reduction afforded 6(Z),9(Z),12(Z)-pentadecatrienol, which was coupled to bromoacetate to afford after purification by HPLC >99%-pure 3-oxalinolenic acid in 10-15% overall yield. 3-Oxalinolenic acid was efficiently oxygenated by soybean lipoxygenase-1 into 3-oxa-13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid, and this hydroperoxide could be further converted chemically into 3-oxa-13(S)-hydroxy-9(Z),11 (E),15(Z)-octadecatrienoic acid and 3-oxa-13-oxo-9(Z),11 (E),15(Z)-octadecatrienoic acid. The 3-oxa-hydroperoxide also served as the substrate for the plant enzymes allene oxide synthase, divinyl ether synthase, and hydroperoxide lyase to produce 3-oxa-12-oxo-10,15(Z)-phytodienoic acid and other 3-oxa-oxylipins that were characterized by MS. 3-Oxalinolenic acid was not oxygenated by 9-lipoxygenase from tomato but was converted at a slow rate into 3-oxa-9(S)-hydroperoxy-10(E),12(Z),15(Z)-octadecatrienoic acid by recombinant maize 9-lipoxygenase. Recombinant alpha-dioxygenase-1 from Arabidopsis thaliana catalyzed the conversion of 3-oxalinolenic acid into a 2-hydroperoxide, which underwent spontaneous degradation into a mixture of 6,9,12-pentadecatrienol and 6,9,12-pentadecatrienyl formate. A novel alpha-dioxygenase from the moss Physcomitrella patens was cloned and expressed and was found to display the same activity with 3-oxalinolenic acid as Arabidopsis thaliana alpha-dioxygenase-1. Lipoxygenase-generated 3-oxa-oxylipins are resistant toward beta-oxidation and have the potential for displaying enhanced biological activity in situations where activity is limited by metabolic degradation.


Asunto(s)
Ácidos Linolénicos/química , Cromatografía Líquida de Alta Presión , Dioxigenasas/metabolismo , Electroforesis en Gel de Poliacrilamida , Cromatografía de Gases y Espectrometría de Masas , Ácidos Linolénicos/síntesis química , Ácidos Linolénicos/metabolismo , Lipooxigenasa/metabolismo , Modelos Químicos , Estructura Molecular , Oxidación-Reducción , Plantas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA