Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7833): 291-296, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087930

RESUMEN

Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.


Asunto(s)
Proteínas de Unión al ADN/química , Conformación Molecular , Ácidos Nucleicos Heterodúplex/química , Proteínas de Arabidopsis/química , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Factores de Transcripción/química
2.
EMBO J ; 40(20): e107795, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34487363

RESUMEN

Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.


Asunto(s)
Factor de Unión a CCCTC/química , Reparación del ADN , Melanoma/genética , Proteínas Serina-Treonina Quinasas/química , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/genética , Sitios de Unión , Unión Competitiva , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Daño del ADN , Expresión Génica , Humanos , Melanoma/metabolismo , Melanoma/patología , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dímeros de Pirimidina/biosíntesis , Dímeros de Pirimidina/química , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Rayos Ultravioleta
3.
Nature ; 566(7744): 344-349, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700907

RESUMEN

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Asunto(s)
Diferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/patología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Epigénesis Genética , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores
4.
Appl Meas Educ ; 36(1): 80-98, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223404

RESUMEN

Multiple choice results are inherently probabilistic outcomes, as correct responses reflect a combination of knowledge and guessing, while incorrect responses additionally reflect blunder, a confidently committed mistake. To objectively resolve knowledge from responses in an MC test structure, we evaluated probabilistic models that explicitly account for guessing, knowledge and blunder using eight assessments (>9,000 responses) from an undergraduate biotechnology curriculum. A Bayesian implementation of the models, aimed at assessing their robustness to prior beliefs in examinee knowledge, showed that explicit estimators of knowledge are markedly sensitive to prior beliefs with scores as sole input. To overcome this limitation, we examined self-ranked confidence as a proxy knowledge indicator. For our test set, three levels of confidence resolved test performance. Responses rated as least confident were correct more frequently than expected from random selection, reflecting partial knowledge, but were balanced by blunder among the most confident responses. By translating evidence-based guessing and blunder rates to pass marks that statistically qualify a desired level of examinee knowledge, our approach finds practical utility in test analysis and design.

5.
Bioorg Med Chem ; 68: 116861, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661929

RESUMEN

The understanding of sequence-specific DNA minor groove interactions has recently made major steps forward and as a result, the goal of development of compounds that target the minor groove is an active research area. In an effort to develop biologically active minor groove agents, we are preparing and exploring the DNA interactions of diverse diamidine derivatives with a 5'-GAATTC-3' binding site using a powerful array of methods including, biosensor-SPR methods, and X-ray crystallography. The benzimidazole-thiophene module provides an excellent minor groove recognition component. A central thiophene in a benzimidazole-thiophene-phenyl aromatic system provides essentially optimum curvature for matching the shape of the minor groove. Comparison of that structure to one with the benzimidazole replaced with an indole shows that the two structures are very similar, but have some interesting and important differences in electrostatic potential maps, the DNA minor groove binding structure based on x-ray crystallographic analysis, and inhibition of the major groove binding PU.1 transcription factor complex. The binding KD for both compounds is under 10 nM and both form amidine H-bonds to DNA bases. They both have bifurcated H-bonds from the benzimidazole or indole groups to bases at the center of the -AATT- binding site. Analysis of the comparative results provides an excellent understanding of how thiophene compounds recognize the minor groove and can act as transcription factor inhibitors.


Asunto(s)
Pentamidina , Tiofenos , Bencimidazoles/química , Sitios de Unión , ADN/química , Diseño de Fármacos , Indoles/farmacología , Modelos Moleculares , Conformación de Ácido Nucleico , Pentamidina/química , Resonancia por Plasmón de Superficie , Tiofenos/química , Tiofenos/farmacología , Factores de Transcripción
6.
Adv Exp Med Biol ; 1371: 11-32, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33616894

RESUMEN

Eukaryotic transcription factors are versatile mediators of specificity in gene regulation. This versatility is achieved through mutual specification by context-specific DNA binding on the one hand, and identity-specific protein-protein partnerships on the other. This interactivity, known as combinatorial control, enables a repertoire of complex transcriptional outputs that are qualitatively disjoint, or non-continuum, with respect to binding affinity. This feature contrasts starkly with prokaryotic gene regulators, whose activities in general vary quantitatively in step with binding affinity. Biophysical studies on prokaryotic model systems and more recent investigations on transcription factors highlight an important role for folded state dynamics and molecular hydration in protein/DNA recognition. Analysis of molecular models of combinatorial control and recent literature in low-affinity gene regulation suggest that transcription factors harbor unique conformational dynamics that are inaccessible or unused by prokaryotic DNA-binding proteins. Thus, understanding the intrinsic dynamics involved in DNA binding and co-regulator recruitment appears to be a key to understanding how transcription factors mediate non-continuum outcomes in eukaryotic gene expression, and how such capability might have evolved from ancient, structurally conserved counterparts.


Asunto(s)
Eucariontes , Regulación de la Expresión Génica , Proteínas de Unión al ADN/genética , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Factores de Transcripción/metabolismo
7.
Anal Biochem ; 629: 114298, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252439

RESUMEN

To extend the value of biosensor-SPR in the characterization of DNA recognition by nucleoproteins, we report a comparative analysis of DNA-facilitated target search by two ETS-family transcription factors: Elk1 and ETV6. ETS domains represent an attractive system for developing biosensor-based techniques due to a broad range of physicochemical properties encoded within a highly conserved DNA-binding motif. Building on a biosensor approach in which the protein is quantitatively sequestered and presented to immobilized cognate DNA as nonspecific complexes, we assessed the impact of intrinsic cognate and nonspecific affinities on long-range (intersegmental) target search. The equilibrium constants of DNA-facilitated binding were sensitive to the intrinsic binding properties of the proteins such that their relative specificity for cognate DNA were reinforced when binding occurred by transfer vs. without nonspecific DNA. Direct measurement of association and dissociation kinetics revealed ionic features of the activated complex that evidenced DNA-facilitated dissociation, even though Elk1 and ETV6 harbor only a single DNA-binding surface. At salt concentrations that masked the effects of nonspecific pre-binding at equilibrium, the dissociation kinetics of cognate binding were nevertheless distinct from conditions under which nonspecific DNA was absent. These results further strengthen the significance of long-range DNA-facilitated translocation in the physiologic environment.


Asunto(s)
ADN/análisis , Nucleoproteínas/química , Sitios de Unión , Técnicas Biosensibles , Escherichia coli/genética , Nucleoproteínas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Represoras/química , Resonancia por Plasmón de Superficie , Proteína Elk-1 con Dominio ets/química , Proteína ETS de Variante de Translocación 6
8.
Phys Chem Chem Phys ; 23(24): 13490-13502, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34120158

RESUMEN

Electrostatic protein/DNA interactions arise from the neutralization of the DNA phosphodiester backbone as well as coupled exchanges by charged protein residues as salt bridges or with mobile ions. Much focus has been and continues to be paid to interfacial ion pairs with DNA. The role of extra-interfacial ionic interactions, particularly as dynamic drivers of DNA sequence selectivity, remain poorly known. The ETS family of transcription factors represents an attractive model for addressing this knowledge gap given their diverse ionic composition in primary structures that fold to a tightly conserved DNA-binding motif. To probe the importance of extra-interfacial salt bridges in DNA recognition, we compared the salt-dependent binding by Elk1 with ETV6, two ETS homologs differing markedly in ionic composition. While both proteins exhibit salt-dependent binding with cognate DNA that corresponds to interfacial phosphate contacts, their nonspecific binding diverges from cognate binding as well as each other. Molecular dynamics simulations in explicit solvent, which generated ionic interactions in agreement with the experimental binding data, revealed distinct salt-bridge dynamics in the nonspecific complexes formed by the two proteins. Impaired DNA contact by ETV6 resulted in fewer backbone contacts in the nonspecific complex, while Elk1 exhibited a redistribution of extra-interfacial salt bridges via residues that are non-conserved between the two ETS relatives. Thus, primary structure variation in ionic residues can encode highly differentiated specificity mechanisms in a highly conserved DNA-binding motif.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Represoras/química , Proteína Elk-1 con Dominio ets/química , Teoría Funcional de la Densidad , Humanos , Proteína ETS de Variante de Translocación 6
9.
Biophys J ; 119(7): 1402-1415, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32898478

RESUMEN

Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >103-fold in binding affinity. The attendant changes in partial molar volumes varied substantially, but not in step with binding affinity, suggesting distinct modes of interactions in these complexes. Specifically, whereas optimal binding was associated with loss of hydration water, low-affinity binding released more hydration water. Explicit-atom molecular dynamics simulations showed that minor groove binding perturbed the conformational dynamics and hydration at the termini and interior of the DNA in a sequence-dependent manner. The impact of these distinct local dynamics on hydration was experimentally validated by domain-specific interrogation of hydration with salt, which probed the charged axial surfaces of oligomeric DNA preferentially over the uncharged termini. Minor groove recognition by DB1976, therefore, generates dynamically distinct domains that can make favorable contributions to hydration release in both high- and low-affinity binding. Because ligand binding at internal sites of DNA oligomers modulates dynamics at the termini, the results suggest both short- and long-range dynamic effects along the DNA target that can influence their effectiveness as low-MW competitors of protein binding.


Asunto(s)
ADN , Agua , Sitios de Unión , Ligandos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
10.
J Biol Chem ; 294(25): 9666-9678, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31048376

RESUMEN

Functional evidence increasingly implicates low-affinity DNA recognition by transcription factors as a general mechanism for the spatiotemporal control of developmental genes. Although the DNA sequence requirements for affinity are well-defined, the dynamic mechanisms that execute cognate recognition are much less resolved. To address this gap, here we examined ETS1, a paradigm developmental transcription factor, as a model for which cognate discrimination remains enigmatic. Using molecular dynamics simulations, we interrogated the DNA-binding domain of murine ETS1 alone and when bound to high-and low-affinity cognate sites or to nonspecific DNA. The results of our analyses revealed collective backbone and side-chain motions that distinguished cognate versus nonspecific as well as high- versus low-affinity cognate DNA binding. Combined with binding experiments with site-directed ETS1 mutants, the molecular dynamics data disclosed a triad of residues that respond specifically to low-affinity cognate DNA. We found that a DNA-contacting residue (Gln-336) specifically recognizes low-affinity DNA and triggers the loss of a distal salt bridge (Glu-343/Arg-378) via a large side-chain motion that compromises the hydrophobic packing of two core helices. As an intact Glu-343/Arg-378 bridge is the default state in unbound ETS1 and maintained in high-affinity and nonspecific complexes, the low-affinity complex represents a unique conformational adaptation to the suboptimization of developmental enhancers.


Asunto(s)
ADN/química , ADN/metabolismo , Proteína Proto-Oncogénica c-ets-1/química , Proteína Proto-Oncogénica c-ets-1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
11.
Nucleic Acids Res ; 46(20): 10577-10588, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30295801

RESUMEN

Hydration of interfaces is a major determinant of target specificity in protein/DNA interactions. Interfacial hydration is a highly variable feature in DNA recognition by ETS transcription factors and functionally relates to cellular responses to osmotic stress. To understand how hydration is mediated in the conserved ETS/DNA binding interface, secondary structures comprising the DNA contact surface of the strongly hydrated ETS member PU.1 were substituted, one at a time, with corresponding elements from its sparsely hydrated relative Ets-1. The resultant PU.1/Ets-1 chimeras exhibited variably reduced sensitivity to osmotic pressure, indicative of a distributed pattern of interfacial hydration in wildt-ype PU.1. With the exception of the recognition helix H3, the chimeras retained substantially high affinities. Ets-1 residues could therefore offset the loss of favorable hydration contributions in PU.1 via low-water interactions, but at the cost of decreased selectivity at base positions flanking the 5'-GGA-3' core consensus. Substitutions within H3 alone, which contacts the core consensus, impaired binding affinity and PU.1 transactivation in accordance with the evolutionary separation of the chimeric residues involved. The combined biophysical, bioinformatics and functional data therefore supports hydration as an evolved specificity determinant that endows PU.1 with more stringent sequence selection over its ancestral relative Ets-1.


Asunto(s)
ADN/química , Proteína Proto-Oncogénica c-ets-1/química , Proteínas Proto-Oncogénicas/química , Transactivadores/química , Animales , Sitios de Unión , Clonación Molecular , Biología Computacional , Cristalización , Genes Reporteros , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Ósmosis , Unión Proteica , Proteínas Recombinantes de Fusión/química , Termodinámica , Agua/química
12.
J Biol Chem ; 292(32): 13187-13196, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28592487

RESUMEN

To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation.


Asunto(s)
ADN/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Técnicas Biosensibles , ADN/química , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Motivo ETS , Difusión Facilitada , Humanos , Cinética , Motivos de Nucleótidos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polidesoxirribonucleótidos/química , Polidesoxirribonucleótidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Elementos de Respuesta , Salmón , Electricidad Estática , Resonancia por Plasmón de Superficie , Termodinámica , Proteína ETS de Variante de Translocación 6
13.
J Biol Chem ; 292(39): 16044-16054, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28790174

RESUMEN

The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.


Asunto(s)
ADN/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión , ADN/química , Huella de ADN , Dimerización , Eliminación de Gen , Cinética , Ratones , Simulación de Dinámica Molecular , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transactivadores/química , Transactivadores/genética
14.
Nucleic Acids Res ; 44(18): 8671-8681, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27270080

RESUMEN

Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited.


Asunto(s)
Metilación de ADN/genética , ADN/metabolismo , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/química , Transactivadores/metabolismo , 5-Metilcitosina/metabolismo , Animales , Sitios de Unión , Islas de CpG/genética , ADN/química , Ratones , Conformación de Ácido Nucleico , Análisis de Componente Principal , Unión Proteica/genética , Dominios Proteicos , Termodinámica
15.
Nucleic Acids Res ; 43(8): 4322-31, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25824951

RESUMEN

The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs.


Asunto(s)
ADN/química , Proteína Proto-Oncogénica c-ets-1/química , Proteínas Proto-Oncogénicas/química , Transactivadores/química , Sitios de Unión , ADN/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo
16.
Nucleic Acids Res ; 42(2): 1379-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157839

RESUMEN

ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with selenophene and/or one or both of the bridging phenyl has been replaced with benzimidazole. Like all ETS proteins, PU.1 binds sequence specifically to 10-bp sites by inserting a recognition helix into the major groove of a 5'-GGAA-3' consensus, accompanied by contacts with the flanking minor groove. We showed that diamidines target the minor groove of AT-rich sequences on one or both sides of the consensus and disrupt PU.1 binding. Although all of the diamidines bind to one or both of the expected sequences within the binding site, considerable heterogeneity exists in terms of stoichiometry, site-site interactions and induced DNA conformation. We also showed that these compounds accumulate in live cell nuclei and inhibit PU.1-dependent gene transactivation. This study demonstrates that heterocyclic diamidines are capable of inhibiting PU.1 by targeting the flanking sequences and supports future efforts to develop agents for inhibiting specific members of the ETS family.


Asunto(s)
Benzamidinas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Secuencia Rica en At , Benzamidinas/análisis , Benzamidinas/química , Sitios de Unión , ADN/química , Células HEK293 , Humanos , Cadenas lambda de Inmunoglobulina/química , Conformación de Ácido Nucleico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Activación Transcripcional/efectos de los fármacos
17.
J Biol Chem ; 289(31): 21605-16, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24952944

RESUMEN

ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.


Asunto(s)
ADN/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Técnicas Biosensibles , Calorimetría , Clonación Molecular , ADN/química , Cinética , Datos de Secuencia Molecular , Presión Osmótica , Conformación Proteica , Proteína Proto-Oncogénica c-ets-1/química , Proteínas Proto-Oncogénicas/química , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Termodinámica , Transactivadores/química , Agua/química
18.
Structure ; 32(1): 83-96.e4, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38042148

RESUMEN

Nucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life. Using the ETS-family factor PU.1 as a high-resolution structural framework, inosine substitution for guanine resulted in a sharp dissection of conformational dynamics and hydration and elucidated their role in the DNA specificity of PU.1. Our work suggests an under-exploited utility of modified nucleobases in untangling the structural thermodynamics of interactions, such as the Arg×GC motif, where direct and indirect readout are tightly integrated.


Asunto(s)
Proteínas Proto-Oncogénicas , Factores de Transcripción , Factores de Transcripción/metabolismo , Sitios de Unión , Unión Proteica , Proteínas Proto-Oncogénicas/química , Termodinámica , ADN/metabolismo , Guanina , Inosina/metabolismo , Conformación de Ácido Nucleico
19.
RSC Adv ; 14(40): 29675-29682, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39297050

RESUMEN

The recognition of specific genomic arrangements by rationally designed small molecules is fundamental for the expansion of targeted gene expression. Here, we report the first X-ray crystal structures that demonstrate single G (guanine) recognition by a highly selective diamidine (DB2447) in a mixed DNA sequence. The study presents detailed structural information on the mechanism of single G recognition by D2447 and its various interactions in the DNA minor groove. Molecular dynamics and binding studies were used to evaluate the details of our reported structures. The study provides structural insight and resources necessary for understanding single G selection in genomic sequences.

20.
Nat Commun ; 15(1): 5428, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926367

RESUMEN

Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.


Asunto(s)
G-Cuádruplex , Genoma Viral , ARN Viral , Virus del Nilo Occidental , ARN Viral/genética , ARN Viral/química , Virus del Nilo Occidental/genética , Conformación de Ácido Nucleico , Modelos Moleculares , Humanos , Emparejamiento Base
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA