Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 623(7987): 514-521, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968526

RESUMEN

Mechanical metamaterials at the microscale exhibit exotic static properties owing to their engineered building blocks1-4, but their dynamic properties have remained substantially less explored. Their design principles can target frequency-dependent properties5-7 and resilience under high-strain-rate deformation8,9, making them versatile materials for applications in lightweight impact resistance10-12, acoustic waveguiding7,13 or vibration damping14,15. However, accessing dynamic properties at small scales has remained a challenge owing to low-throughput and destructive characterization8,16,17 or lack of existing testing protocols. Here we demonstrate a high-throughput, non-contact framework that uses MHz-wave-propagation signatures within a metamaterial to non-destructively extract dynamic linear properties, omnidirectional elastic information, damping properties and defect quantification. Using rod-like tessellations of microscopic metamaterials, we report up to 94% direction-dependent and rate-dependent dynamic stiffening at strain rates approaching 102 s-1, as well as damping properties three times higher than their constituent materials. We also show that frequency shifts in the vibrational response allow for characterization of invisible defects within the metamaterials and that selective probing allows for the construction of experimental elastic surfaces, which were previously only possible computationally. Our work provides a route for accelerated data-driven discovery of materials and microdevices for dynamic applications such as protective structures, medical ultrasound or vibration isolation.

2.
Proc Natl Acad Sci U S A ; 121(6): e2313962121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306480

RESUMEN

Ultralight architected materials enabled by advanced manufacturing processes have achieved density-normalized strength and stiffness properties that are inaccessible to bulk materials. However, the majority of this work has focused on static loading and elastic-wave propagation. Fundamental understanding of the mechanical behavior of architected materials under large-deformation dynamic conditions remains limited, due to the complexity of mechanical responses and shortcomings of characterization methods. Here, we present a microscale suspended-plate impact testing framework for three-dimensional micro-architected materials, where supersonic microparticles to velocities of up to 850 m/s are accelerated against a substrate-decoupled architected material to quantify its energy dissipation characteristics. Using ultra-high-speed imaging, we perform in situ quantification of the impact energetics on two types of architected materials as well as their constituent nonarchitected monolithic polymer, indicating a 47% or greater increase in mass-normalized energy dissipation under a given impact condition through use of architecture. Post-mortem characterization, supported by a series of quasi-static experiments and high-fidelity simulations, shed light on two coupled mechanisms of energy dissipation: material compaction and particle-induced fracture. Together, experiments and simulations indicate that architecture-specific resistance to compaction and fracture can explain a difference in dynamic impact response across architectures. We complement our experimental and numerical efforts with dimensional analysis which provides a predictive framework for kinetic-energy absorption as a function of material parameters and impact conditions. We envision that enhanced understanding of energy dissipation mechanisms in architected materials will serve to define design considerations toward the creation of lightweight impact-mitigating materials for protective applications.

3.
Nature ; 573(7773): 205-213, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511685

RESUMEN

Architected materials can actively respond to external stimuli-such as mechanical forces, hydration and magnetic fields-by changing their geometries and thereby achieve novel functionalities. Such transformations are usually binary and volatile because they toggle between 'on' and 'off' states and require persistent external stimuli. Here we develop three-dimensional silicon-coated tetragonal microlattices that transform into sinusoidal patterns via cooperative beam buckling in response to an electrochemically driven silicon-lithium alloying reaction. In situ microscopy reveals a controllable, non-volatile and reversible structural transformation that forms multiple ordered buckling domains separated by distorted domain boundaries. We investigate the mechanical dynamics of individual buckling beams, cooperative coupling among neighbouring beams, and lithiation-rate-dependent distributions of domain sizes through chemo-mechanical modelling and statistical mechanics analysis. Our results highlight the critical role of defects and energy fluctuations in the dynamic response of architected materials. We further demonstrate that domain boundaries can be programmed to form particular patterns by pre-designing artificial defects, and that a variety of reconfigurational degrees of freedom can be achieved through micro-architecture design. This framework enables the design, fabrication, modelling, behaviour prediction and programming of electrochemically reconfigurable architected materials, and could open the way to beyond-intercalation battery electrodes, tunable phononic crystals and bio-implantable devices.

4.
Nano Lett ; 23(11): 5155-5163, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37216440

RESUMEN

Self-assembled nanoparticle superlattices (NPSLs) are an emergent class of self-architected nanocomposite materials that possess promising properties arising from precise nanoparticle ordering. Their multiple coupled properties make them desirable as functional components in devices where mechanical robustness is critical. However, questions remain about NPSL mechanical properties and how shaping them affects their mechanical response. Here, we perform in situ nanomechanical experiments that evidence up to an 11-fold increase in stiffness (∼1.49 to 16.9 GPa) and a 5-fold increase in strength (∼88 to 426 MPa) because of surface stiffening/strengthening from shaping these nanomaterials via focused-ion-beam milling. To predict the mechanical properties of shaped NPSLs, we present discrete element method (DEM) simulations and an analytical core-shell model that capture the FIB-induced stiffening response. This work presents a route for tunable mechanical responses of self-architected NPSLs and provides two frameworks to predict their mechanical response and guide the design of future NPSL-containing devices.

5.
Proc Natl Acad Sci U S A ; 117(11): 5686-5693, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132212

RESUMEN

Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters. Guided by simulations of separation processes, we numerically show that the curvature of self-assembled shells can produce close to optimal stiffness scaling with density, and we experimentally demonstrate that a carefully chosen combination of topology, geometry, and base material results in superior mechanical resilience in the architected product. Our approach provides a pathway to harnessing self-assembly methods in the design and scalable fabrication of beyond-periodic and nonbeam-based nano-architected materials with simultaneous directional tunability, high stiffness, and unsurpassed recoverability with marginal deterioration.

6.
Nat Mater ; 20(11): 1491-1497, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34168332

RESUMEN

Architected materials with nanoscale features have enabled extreme combinations of properties by exploiting the ultralightweight structural design space together with size-induced mechanical enhancement at small scales. Apart from linear waves in metamaterials, this principle has been restricted to quasi-static properties or to low-speed phenomena, leaving nanoarchitected materials under extreme dynamic conditions largely unexplored. Here, using supersonic microparticle impact experiments, we demonstrate extreme impact energy dissipation in three-dimensional nanoarchitected carbon materials that exhibit mass-normalized energy dissipation superior to that of traditional impact-resistant materials such as steel, aluminium, polymethyl methacrylate and Kevlar. In-situ ultrahigh-speed imaging and post-mortem confocal microscopy reveal consistent mechanisms such as compaction cratering and microparticle capture that enable this superior response. By analogy to planetary impact, we introduce predictive tools for crater formation in these materials using dimensional analysis. These results substantially uncover the dynamic regime over which nanoarchitecture enables the design of ultralightweight, impact-resistant materials that could open the way to design principles for lightweight armour, protective coatings and blast-resistant shields for sensitive electronics.


Asunto(s)
Carbono , Polimetil Metacrilato , Polimetil Metacrilato/química
7.
Nano Lett ; 18(8): 4755-4761, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022671

RESUMEN

Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m-1 K-1 at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg-1 m3 and the ability to recover from large deformations. These nanoarchitected materials possess the same ultralow thermal conductivities as aerogels while attaining specific elastic moduli that are nearly 2 orders of magnitude higher. Our work demonstrates a general route to realizing multifunctional materials that occupy previously unreachable regions within the material property space.

8.
Nat Commun ; 13(1): 1041, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210416

RESUMEN

Mechanical metamaterials have been designed to achieve custom Poisson's ratios via the deformation of their microarchitecture. These designs, however, have yet to achieve the capability of exhibiting Poisson's ratios that alternate by design both temporally and spatially according to deformation. This capability would enable dynamic shape-morphing applications including smart materials that process mechanical information according to multiple time-ordered output signals without requiring active control or power. Herein, both periodic and graded metamaterials are introduced that leverage principles of differential stiffness and self-contact to passively achieve sequential deformations, which manifest as user-specified alternating Poisson's ratios. An analytical approach is provided with a complementary software tool that enables the design of such materials in two- and three-dimensions. This advance in design capability is due to the fact that the tool computes sequential deformations more than an order of magnitude faster than contemporary finite-element packages. Experiments on macro- and micro-scale designs validate their predicted alternating Poisson's ratios.

9.
Adv Sci (Weinh) ; 7(20): 2001271, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101856

RESUMEN

Hierarchy in natural and synthetic materials has been shown to grant these architected materials properties unattainable independently by their constituent materials. While exceptional mechanical properties such as extreme resilience and high deformability have been realized in many human-made three-dimensional (3D) architected materials using beam-and-junction-based architectures, stress concentrations and constraints induced by the junctions limit their mechanical performance. A new hierarchical architecture in which fibers are interwoven to construct effective beams is presented. In situ tension and compression experiments of additively manufactured woven and monolithic lattices with 30 µm unit cells demonstrate the superior ability of woven architectures to achieve high tensile and compressive strains (>50%)-without failure events-via smooth reconfiguration of woven microfibers in the effective beams and junctions. Cyclic compression experiments reveal that woven lattices accrue less damage compared to lattices with monolithic beams. Numerical studies of woven beams with varying geometric parameters present new design spaces to develop architected materials with tailored compliance that is unachievable by similarly configured monolithic-beam architectures. Woven hierarchical design offers a pathway to make traditionally stiff and brittle materials more deformable and introduces a new building block for 3D architected materials with complex nonlinear mechanics.

10.
Nat Commun ; 10(1): 291, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30655524

RESUMEN

Designing mechanical metamaterials is overwhelming for most computational approaches because of the staggering number and complexity of flexible elements that constitute their architecture-particularly if these elements don't repeat in periodic patterns or collectively occupy irregular bulk shapes. We introduce an approach, inspired by the freedom and constraint topologies (FACT) methodology, that leverages simplified assumptions to enable the design of such materials with ~6 orders of magnitude greater computational efficiency than other approaches (e.g., topology optimization). Metamaterials designed using this approach are called directionally compliant metamaterials (DCMs) because they manifest prescribed compliant directions while possessing high stiffness in all other directions. Since their compliant directions are governed by both macroscale shape and microscale architecture, DCMs can be engineered with the necessary design freedom to facilitate arbitrary form and unprecedented anisotropy. Thus, DCMs show promise as irregularly shaped flexure bearings, compliant prosthetics, morphing structures, and soft robots.

11.
Nat Commun ; 9(1): 593, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426947

RESUMEN

Most existing methods for additive manufacturing (AM) of metals are inherently limited to ~20-50 µm resolution, which makes them untenable for generating complex 3D-printed metallic structures with smaller features. We developed a lithography-based process to create complex 3D nano-architected metals with ~100 nm resolution. We first synthesize hybrid organic-inorganic materials that contain Ni clusters to produce a metal-rich photoresist, then use two-photon lithography to sculpt 3D polymer scaffolds, and pyrolyze them to volatilize the organics, which produces a >90 wt% Ni-containing architecture. We demonstrate nanolattices with octet geometries, 2 µm unit cells and 300-400-nm diameter beams made of 20-nm grained nanocrystalline, nanoporous Ni. Nanomechanical experiments reveal their specific strength to be 2.1-7.2 MPa g-1 cm3, which is comparable to lattice architectures fabricated using existing metal AM processes. This work demonstrates an efficient pathway to 3D-print micro-architected and nano-architected metals with sub-micron resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA