Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Immunol Rev ; 323(1): 19-39, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459782

RESUMEN

Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.


Asunto(s)
Células Asesinas Naturales , Neoplasias , Microambiente Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Microambiente Tumoral/inmunología , Animales , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Inmunoterapia Adoptiva/métodos , Adaptación Fisiológica , Factor de Transcripción STAT3/metabolismo , Metabolismo Energético , Escape del Tumor
2.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512020

RESUMEN

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Asunto(s)
COVID-19 , Interferón Tipo I , Infecciones por Orthomyxoviridae , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteolisis
3.
Cancer Immunol Immunother ; 67(4): 575-587, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29299659

RESUMEN

Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.


Asunto(s)
Ascitis/inmunología , Citotoxicidad Inmunológica/inmunología , Inmunoterapia , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Ascitis/metabolismo , Proliferación Celular , Citocinas/metabolismo , Femenino , Humanos , Células Asesinas Naturales/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/terapia , Células Tumorales Cultivadas
4.
Inflamm Res ; 67(10): 813-828, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30066126

RESUMEN

Metabolic flux can dictate cell fate, including immune cell effector and regulatory function. The metabolic regulation of cell function is well characterized with respect to effector, memory, and regulatory T cells. This knowledge may allow for manipulation of T cell metabolic pathways that set the stage for more effective T cell therapy. Natural Killer (NK) and T-lymphocytes have complementary roles in the defense against pathogens. However, studies of NK cell metabolism are only beginning to emerge and there is comparatively little knowledge on the metabolic regulation of NK-cell activation and effector function. Given their common lymphoid lineage, effector functions and cellular memory potential our current knowledge on T cell metabolism could inform investigation of metabolic reprogramming in NK cells. In this review, we compare the current knowledge of metabolic regulation in T cell and NK cell development, activation, effector and memory function. Commonalties in glucose transport, hypoxia-inducible factors and mTOR highlight metabolic control points in both cells types. Contrasting the glycolytic and oxidative nodes of metabolic regulation in T cells versus NK cells may provide insight into the contribution of specific immune responses to disease and promote the development of immunotherapeutic approaches targeting both innate and adaptive immune responses.


Asunto(s)
Células Asesinas Naturales/metabolismo , Linfocitos T/metabolismo , Animales , Humanos , Memoria Inmunológica , Inflamación/inmunología , Inflamación/metabolismo , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Linfocitos T/inmunología
6.
Cytokine ; 95: 7-11, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28189043

RESUMEN

Endotoxin, or LPS tolerance, is an immunomodulatory mechanism that results in a significantly diminished response to secondary LPS exposure, which may serve to protect the host against endotoxic shock. Type I interferons (IFNs) are cytokines released upon LPS binding to TLR4 and have been shown to have immunomodulatory properties. Due to this regulatory function of type I IFN, we aimed to investigate the role of type I IFN signalling in LPS tolerance. Our data suggests that type I IFN does not play a role in LPS tolerance in vitro, as both wild type and IFNAR1-/- peritoneal macrophages showed reduced cytokine production after secondary LPS exposure. Furthermore, both wild type and IFNAR1-/- mice were protected from a lethal dose of LPS after receiving three small doses to induce tolerance. However, IFNAR-/- mice seemed to recover faster than wild type mice, suggesting type I IFN signalling plays a detrimental role in LPS-induced sepsis. Although type I IFN may have a regulatory function in microbial infections, it does not seem to play a role in endotoxin tolerance. Type I IFN involvement in bacterial infection remains complex and further studies are needed to define the regulatory function of type I IFN signalling.


Asunto(s)
Interferón Tipo I/fisiología , Lipopolisacáridos/toxicidad , Choque Séptico/inmunología , Transducción de Señal , Animales , Células Cultivadas , Tolerancia a Medicamentos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética
8.
Cells ; 10(3)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806810

RESUMEN

As highlighted by the COVID-19 global pandemic, elderly individuals comprise the majority of cases of severe viral infection outcomes and death. A combined inability to control viral replication and exacerbated inflammatory immune activation in elderly patients causes irreparable immune-mediated tissue pathology in response to infection. Key to these responses are type I, II, and III interferons (IFNs), which are involved in inducing an antiviral response, as well as controlling and suppressing inflammation and immunopathology. IFNs support monocyte/macrophage-stimulated immune responses that clear infection and promote their immunosuppressive functions that prevent excess inflammation and immune-mediated pathology. The timing and magnitude of IFN responses to infection are critical towards their immunoregulatory functions and ability to prevent immunopathology. Aging is associated with multiple defects in the ability of macrophages and dendritic cells to produce IFNs in response to viral infection, leading to a dysregulation of inflammatory immune responses. Understanding the implications of aging on IFN-regulated inflammation will give critical insights on how to treat and prevent severe infection in vulnerable individuals. In this review, we describe the causes of impaired IFN production in aging, and the evidence to suggest that these impairments impact the regulation of the innate and adaptive immune response to infection, thereby causing disease pathology.


Asunto(s)
Inmunidad Adaptativa , Envejecimiento/inmunología , COVID-19/inmunología , Inmunidad Innata , Interferones/fisiología , SARS-CoV-2/inmunología , Replicación Viral/inmunología , Anciano , COVID-19/virología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/uso terapéutico , Interferón gamma/inmunología , Interferón gamma/uso terapéutico , Interferones/inmunología , Interferones/uso terapéutico , Interferón lambda , Tratamiento Farmacológico de COVID-19
9.
J Immunother Cancer ; 9(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33479024

RESUMEN

Lung cancer remains the leading cause of cancer death worldwide despite the significant progress made by immune checkpoint inhibitors, including programmed death receptor-1 (PD1)/PD ligand 1 (PDL1)-blockade therapy. PD1/PDL1-blockade has achieved unprecedented tumor regression in some patients with advanced lung cancer. However, the majority of patients fail to respond to PD1/PDL1 inhibitors. The high rate of therapy non-response results from insufficient PDL1 expression on most patients' tumors and the presence of further immunosuppressive mechanisms in the tumor microenvironment. Here, we sensitize non-responding tumors from patients with lung cancer to PD1-blockade therapy using highly cytotoxic expanded natural killer (NK) cells. We uncover that NK cells expanded from patients with lung cancer dismantle the immunosuppressive tumor microenvironment by maintaining strong antitumor activity against both PDL1+ and PDL1- patient tumors. In the process, through a contact-independent mechanism involving interferon γ, expanded NK cells rescued tumor killing by exhausted endogenous TILs and upregulated the tumor proportion score of PDL1 across patient tumors. In contrast, unexpanded NK cells, which are susceptible to tumor-induced immunosuppression, had no effect on tumor PDL1. As a result, combined treatment of expanded NK cells and PD1-blockade resulted in robust synergistic tumor destruction of initially non-responding patient tumors. Thus, expanded NK cells may overcome the critical roadblocks to extending the prodigious benefits of PD1-blockade therapy to more patients with lung cancer and other tumor types.


Asunto(s)
Antígeno B7-H1/metabolismo , Técnicas de Cocultivo/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Células Asesinas Naturales/citología , Neoplasias Pulmonares/inmunología , Células A549 , Anciano , Anciano de 80 o más Años , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Células K562 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Microambiente Tumoral
10.
Cell Metab ; 33(6): 1205-1220.e5, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852875

RESUMEN

NK cells are central to anti-tumor immunity and recently showed efficacy for treating hematologic malignancies. However, their dysfunction in the hostile tumor microenvironment remains a pivotal barrier for cancer immunotherapies against solid tumors. Using cancer patient samples and proteomics, we found that human NK cell dysfunction in the tumor microenvironment is due to suppression of glucose metabolism via lipid peroxidation-associated oxidative stress. Activation of the Nrf2 antioxidant pathway restored NK cell metabolism and function and resulted in greater anti-tumor activity in vivo. Strikingly, expanded NK cells reprogrammed with complete metabolic substrate flexibility not only sustained metabolic fitness but paradoxically augmented their tumor killing in the tumor microenvironment and in response to nutrient deprivation. Our results uncover that metabolic flexibility enables a cytotoxic immune cell to exploit the metabolic hostility of tumors for their advantage, addressing a critical hurdle for cancer immunotherapy.


Asunto(s)
Antineoplásicos/inmunología , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Microambiente Tumoral , Adulto , Anciano , Animales , Línea Celular Tumoral , Femenino , Humanos , Células Asesinas Naturales/citología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
11.
iScience ; 24(6): 102619, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34159300

RESUMEN

Despite the remarkable success of chimeric antigen receptor (CAR)-T cells against hematologic malignancies, severe off-tumor effects have constrained their use against solid tumors. Recently, CAR-engineered natural killer (NK) cells have emerged as an effective and safe alternative. Here, we demonstrate that HER2 CAR-expression in NK cells from healthy donors and patients with breast cancer potently enhances their anti-tumor functions against various HER2-expressing cancer cells, regardless of MHC class I expression. Moreover, HER2 CAR-NK cells exert higher cytotoxicity than donor-matched HER2 CAR-T cells against tumor targets. Importantly, unlike CAR-T cells, HER2 CAR-NK cells do not elicit enhanced cytotoxicity or inflammatory cytokine production against non-malignant human lung epithelial cells with basal HER2 expression. Further, HER2 CAR-NK cells maintain high cytotoxic function in the presence of immunosuppressive factors enriched in solid tumors. These results show that CAR-NK cells may be a highly potent and safe source of immunotherapy in the context of solid tumors.

12.
Front Immunol ; 10: 1414, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275330

RESUMEN

NK cells are capable of an array of functions that range widely from their classic anti-tumor and anti-viral cytotoxic effector functions, to their critical regulatory roles in controlling inflammatory immune responses and promoting tissue growth. However, the mechanisms that polarize NK cells to these distinct and opposing functions are incompletely understood. NK cell functional subsets are primarily identified and studied based on phenotype, which has served as an accessible means for profiling NK cells and does offer information on NK cell activation state. However, inconsistencies have emerged in using classic phenotypes to inform function, which raise the questions: Can phenotype in fact define NK cell functional fate? What factors do profile and drive NK cell fate? In other immune cells, cell metabolism has been shown to critically determine subset polarization. There is a growing body of evidence that cell metabolism is integral to NK cell effector functions. Glucose-driven glycolysis and oxidative metabolism have been shown to drive classic NK cell anti-tumor and anti-viral effector functions. Recent studies have uncovered a critical role for metabolism in NK cell development, education, and memory generation. In this review, we will draw on the evidence to date to investigate the relationship between NK cell phenotype, metabolism, and functional fate. We explore a paradigm in which the differential activity of metabolic pathways within NK cells produce distinct metabolic fingerprints that comprehensively distinguish and drive the range of NK cell functional abilities. We will discuss future areas of study that are needed to develop and test this paradigm and suggest strategies to efficiently profile NK cells based on metabolism. Given the emerging role of metabolism in driving NK cell fates, profiling and modulating NK cell metabolism holds profound therapeutic potential to tune inflammatory and regulatory NK cell responses to treat disease.


Asunto(s)
Metabolismo Energético , Inmunidad Innata , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Fenotipo , Animales , Biomarcadores , Diferenciación Celular , Citotoxicidad Inmunológica , Humanos , Memoria Inmunológica , Inmunomodulación
13.
Front Immunol ; 10: 1261, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214198

RESUMEN

NK cells are a key antiviral component of the innate immune response to HSV-2, particularly through their production of IFN-γ. It is still commonly thought that type I IFN activates NK cell function; however, rather than requiring the type I IFN receptor themselves, we have previously found that type I IFN activates NK cells through an indirect mechanism involving inflammatory monocytes and IL-18. Here, we further show that direct action of type I IFN on NK cells, rather than inducing IFN-γ, negatively regulates its production during HSV-2 infection and cytokine stimulation. During infection, IFN-γ is rapidly induced from NK cells at day 2 post-infection and then immediately downregulated at day 3 post-infection. We found that this downregulation of IFN-γ release was not due to a loss of NK cells at day 3 post-infection, but negatively regulated through IFN signaling on NK cells. Absence of IFNAR on NK cells led to a significantly increased level of IFN-γ compared to WT NK cells after HSV-2 infection in vitro. Further, priming of NK cells with type I IFN was able to suppress cytokine-induced IFN-γ production from both human and mouse NK cells. We found that this immunosuppression was not mediated by IL-10. Rather, we found that type I IFN induced a significant increase in Axl expression on human NK cells. Overall, our data suggests that type I IFN negatively regulates NK cell IFN-γ production through a direct mechanism in vitro and during HSV-2 infection.


Asunto(s)
Interferón gamma/biosíntesis , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Regulación de la Expresión Génica , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 2/fisiología , Humanos , Inmunofenotipificación , Interleucina-10/biosíntesis , Recuento de Linfocitos , Ratones , Ratones Transgénicos , Receptor de Interferón alfa y beta/genética
14.
J Immunother ; 41(2): 64-72, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29189387

RESUMEN

With over 600,000 units of umbilical cord blood (CB) stored on a global scale, it is important to elucidate the therapeutic abilities of this cryopreserved reservoir. In the advancing field of natural killer (NK) cell cancer immunotherapy, CB has proven to be a promising and noninvasive source of therapeutic NK cells. Although studies have proven the clinical efficacy of using long-term cryopreserved CB in the context of hematopoietic stem cell transplantations, little is known about its use for the ex vivo expansion of effector immune cells. Therefore, our group sought to derive ex vivo-expanded NK cells from long-term cryopreserved CB, using an artificial antigen presenting cell-mediated expansion technique. We compared the expansion potential and antitumor effector function of CB-derived NK (CB-NK) cells expanded from fresh (n=4), short-term cryopreserved (<1-year old, n=5), and long-term cryopreserved (1-10-year old, n=5) CB. Here, we demonstrated it is possible to obtain an exponential amount of expanded CB-NK cells from long-term cryopreserved CB. Ex vivo-expanded CB-NK cells had an increased surface expression of activating markers and showed potent antitumor function by producing robust levels of proinflammatory cytokines, interferon-γ, and tumor necrosis factor-α. Moreover, expanded CB-NK cells (n=3-5) demonstrated cytotoxicity towards primary breast cancer cells (n=2) derived from a triple-negative breast cancer and an estrogen receptor-positive/progesterone receptor-positive breast cancer patient. Long-term cryopreservation had no effect on the expansion potential or effector function of expanded CB-NK cells. Therefore, we propose that long-term cryopreserved CB remains clinically useful for the ex vivo expansion of therapeutic NK cells.


Asunto(s)
Neoplasias de la Mama/inmunología , Citotoxicidad Inmunológica , Sangre Fetal/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Criopreservación , Citocinas/metabolismo , Humanos , Activación de Linfocitos
15.
Cancer Immunol Res ; 6(10): 1174-1185, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30018043

RESUMEN

Natural killer (NK) cells are useful for cancer immunotherapy and have proven clinically effective against hematologic malignancies. However, immunotherapies for poor prognosis solid malignancies, including ovarian cancer, have not been as successful due to immunosuppression by solid tumors. Although rearming patients' own NK cells to treat cancer is an attractive option, success of that strategy is limited by the impaired function of NK cells from cancer patients and by inhibition by self-MHC. In this study, we show that expansion converts healthy donor and immunosuppressed ovarian cancer patient NK cells to a cytotoxic CD56superbrightCD16+ subset with activation state and antitumor functions that increase with CD56 brightness. We investigated whether these expanded NK cells may overcome the limitations of autologous NK cell therapy against solid tumors. Peripheral blood- and ascites-derived NK cells from ovarian cancer patients were expanded and then adoptively transferred into cell-line and autologous patient-derived xenograft models of human ovarian cancer. Expanded ovarian cancer patient NK cells reduced the burden of established tumors and prolonged survival. These results suggest that CD56bright NK cells harbor superior antitumor function compared with CD56dim cells. Thus, NK cell expansion may overcome limitations on autologous NK cell therapy by converting the patient's NK cells to a cytotoxic subset that exerts a therapeutic effect against autologous tumor. These findings suggest that the value of expanded autologous NK cell therapy for ovarian cancer and other solid malignancies should be clinically assessed. Cancer Immunol Res; 6(10); 1174-85. ©2018 AACR.


Asunto(s)
Antígeno CD56/inmunología , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Receptores de IgG/inmunología , Animales , Ascitis/inmunología , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Inmunoterapia Adoptiva , Ratones Transgénicos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Sci Rep ; 7(1): 12083, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935883

RESUMEN

Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.


Asunto(s)
Traslado Adoptivo/métodos , Proliferación Celular , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/trasplante , Animales , Línea Celular Tumoral , Supervivencia Celular/inmunología , Células Cultivadas , Sangre Fetal/citología , Humanos , Inmunoterapia Adoptiva/métodos , Células K562 , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ratones Endogámicos NOD , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/terapia
17.
Mol Immunol ; 88: 138-147, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28644973

RESUMEN

The synergistic effect of IL-18/IL-15/IL-12 stimulation potently activates NK cells, inducing high levels of IFN-γ production. As a result of this potent stimulatory effect, NK cell pre-activation with IL-18/IL-15/IL-12 is being developed as a cancer immunotherapy. Ex vivo expansion of NK cells enables the efficient generation of large numbers of NK cells for wide-scale and repeated therapeutic use, and is thus an important source of NK cells for clinical application. However, the effects of IL-18/IL-15/IL-12 stimulation on ex vivo expanded NK cells have not yet been assessed. Thus, the present study assessed the effects of IL-18/IL-15/IL-12 stimulation on NK cells expanded ex vivo using K562-based artificial antigen presenting cells expressing membrane-bound IL-21. We report that ex vivo expanded NK cells stimulated with IL-18/IL-15/IL-12 produce high levels of IFN-γ and TNFα, have potent cytotoxicity, and maintain prolonged IFN-γ production following removal of stimulation. IL-18/IL-15/IL-12 stimulation induces a phenotypically unique IFN-γ-producing population with reduced CD16 expression and greater CD25 expression as compared to stimulated IFN-γ- NK cells and unstimulated NK cells. We elucidate that the mechanism of synergy for induction and maintenance of IFN-γ production is not due to a further enhancement of STAT4 activation compared to stimulation with IL-12 alone. Furthermore, we demonstrate that the synergistic increase in IFN-γ is not solely under translational regulation, as elevated levels of IFN-γ mRNA contribute to the synergistic increase in IFN-γ. Overall, this study characterizes the response of ex vivo expanded NK cells to IL-18/IL-15/IL-12 stimulation and supports the use of ex vivo expanded NK cells as a feasible and efficient source of IL-18/IL-15/IL-12 pre-activated NK cells for adoptive transfer in cancer immunotherapies.


Asunto(s)
Interferón gamma/biosíntesis , Interleucina-12/farmacología , Interleucina-15/farmacología , Interleucina-18/farmacología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Factor de Transcripción STAT4/metabolismo , Traslado Adoptivo/métodos , Células Cultivadas , Humanos , Inmunoterapia/métodos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Interleucinas/metabolismo , Neoplasias/terapia , Receptores de IgG/biosíntesis , Factor de Necrosis Tumoral alfa
18.
J Innate Immun ; 9(5): 511-525, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28633138

RESUMEN

The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Interleucina-12/farmacología , Interleucina-18/farmacología , Interleucina-8/metabolismo , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Protocolos de Quimioterapia Combinada Antineoplásica , Células Cultivadas , Citotoxicidad Inmunológica , Sinergismo Farmacológico , Humanos , Inmunización , Interferón gamma/metabolismo , Neoplasias/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA