Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Radiat Biol ; 97(sup1): S10-S18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32924716

RESUMEN

PURPOSE: Well-controlled ionizing radiation injury animal models for testing medical countermeasure efficacy require robust radiation physics and dosimetry to ensure accuracy of dose-delivery and reproducibility of the radiation dose-response relationship. The objective of this study was to establish a simple, convenient, robust and accurate technique for validating total body irradiation (TBI) exposure of the New Zealand White rabbit. METHODS: We use radiotherapy techniques such as computed tomography simulation and a 3 D-conformal radiation therapy treatment planning system (TPS) on three animals to comprehensively design and preplan a TBI technique for rabbits. We evaluate the requirement for bolus, treatment geometry, bilateral vs anterior-posterior treatment delivery, the agreement between monitor units calculated using the TPS vs a traditional hand calculation to the mid-plane, and resulting individual organ doses. RESULTS: The optimal technique irradiates animals on the left-decubitus position using two isocentric bilateral parallel-opposed 6 MV x-ray beams. Placement of a 5 mm bolus and 8.5 mm beam spoiler was shown to increase the dose to within ≤5 mm of the surface, improving dose homogeneity throughout the body of the rabbit. A simple hand calculation formalism, dependent only on mid-abdominal separation, could be used to calculate the number of monitor units (MUs) required to accurately deliver the prescribed dose to the animal. For the representative animal, the total body volume receiving > 95% of the dose, V95% > 99%, V100% > 95%, and V107% < 20%. The area of the body receiving >107% of the prescribed dose was mainly within the limbs, head, and around the lungs of the animal, where the smaller animal width reduces the x-ray attenuation. Individual organs were contoured by an experienced dosimetrist, and each received doses within 95-107% of the intended dose, with mean values ∼104%. Only the bronchus showed a maximal dose >107% (113%) due to the decreased attenuation of the lungs. To validate the technique, twenty animals were irradiated with four optically-stimulated luminescence dosimeters (OSLDs) placed on the surface of each animal (two on each side in the center of the radiation beam). The average dose over all animals was within <0.1% from intended values, with no animal receiving an average dose more than ±3.1% from prescription. CONCLUSION: The TBI technique developed in this pilot study was successfully used to establish the dose-response relationship for 45-day lethality across the dose-range to induce the hematopoietic-subsyndrome of the acute radiation syndrome (ARS).


Asunto(s)
Radiometría , Irradiación Corporal Total , Animales , Fantasmas de Imagen , Proyectos Piloto , Conejos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X
2.
Health Phys ; 109(5): 367-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26425898

RESUMEN

Multi-organ dose evaluations and the effects of heterogeneous tissue dose calculations have been retrospectively evaluated following irradiation to the whole thorax and lung in non-human primates (NHP). A clinical-based approach was established to evaluate actual doses received in the heart and lungs during whole thorax lung irradiation. Anatomical structure and organ densities have been introduced in the calculations to show the effects of dose distribution through heterogeneous tissue. Mean organ doses received by non-human primates undergoing whole thorax lung irradiations were calculated using a treatment planning system that is routinely used in clinical radiation oncology. The doses received by non-human primates irradiated following conventional dose calculations have been retrospectively reconstructed using computerized tomography-based, heterogeneity-corrected dose calculations. The use of dose volume descriptors for irradiation to organs at risk and tissue exposed to radiation is introduced. Mean and partial-volume doses to lung and heart are presented and contrasted. The importance of exact dose definitions is highlighted, and the relevance of precise dosimetry to establish organ-specific dose response relationships in NHP models of acute and delayed effects of acute radiation exposure is emphasized.


Asunto(s)
Síndrome de Radiación Aguda/fisiopatología , Modelos Animales de Enfermedad , Pulmón/fisiología , Exposición a la Radiación/efectos adversos , Radiometría/métodos , Tórax/fisiología , Absorción de Radiación , Síndrome de Radiación Aguda/etiología , Animales , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Pulmón/efectos de la radiación , Macaca mulatta , Masculino , Modelos Biológicos , Especificidad de Órganos , Exposición a la Radiación/análisis , Tórax/efectos de la radiación , Estados Unidos
3.
Int J Radiat Oncol Biol Phys ; 58(3): 721-6, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14967426

RESUMEN

PURPOSE: A pilot study was designed to evaluate the safety and efficacy of a novel regimen of hypofractionated intensity-modulated radiotherapy (RT) in the adjuvant treatment of primary glioblastoma multiforme (GBM). The rationale of the study was to combine the potential radiobiologic advantage of hypofractionation to GBM with a highly conformal radiotherapeutic technique. The study was designed to measure the acute and chronic morbidity of patients treated with this regimen, response of GBM to the treatment, overall survival, and time to disease progression after therapy completion. METHODS AND MATERIALS: Twenty eligible patients were accrued between February 1999 and May 2000 for the study. All patients had Karnofsky performance scores of >/=70. All patients were treated with intensity-modulated RT using the NOMOS Peacock system. A dose of 50 Gy was delivered in 5-Gy daily fractions within 2 weeks to enhancing primary disease, residual tumor, or surgical cavity. Simultaneously, 30 Gy was prescribed in 3-Gy daily fractions to surrounding edema. The time to progression was measured with serial neurologic examinations and MRI or CT scans after RT completion. Acute and late toxicity was graded using Radiation Therapy Oncology Group neurotoxicity scores. RESULTS: Of the 20 patients, 18 were evaluated for outcome. The median time to disease progression was 6 months after RT completion. The median overall survival was 7 months after treatment completion. All recurrences were within 2 cm of the operative bed. Neurotoxicity during therapy was minimal, with all patients experiencing Grade 0 or 1 toxicity. Late toxicity included 10 patients with Grade 0, 2 patients with Grade 2, and 3 patients with Grade 4 toxicity, manifesting as brain necrosis requiring surgical reexcision. The survival of the 3 patients with brain necrosis was 23, 20, and 9 months. Mortality in all cases was the result of tumor recurrence, with no mortality resulting from brain necrosis. CONCLUSION: This regimen of hypofractionated intensity-modulated RT did not improve the time to disease progression or overall survival compared with historical experience using conventional fractionation. However, the treatment duration was reduced from 6 weeks to 2 weeks, which may be of palliative benefit in certain subsets of patients. This treatment regimen demonstrated a greater incidence of brain necrosis requiring surgical intervention; however, the 3 patients experiencing this toxicity had longer survival times. Future investigation may be useful to determine which fraction size may be optimal for GBM when highly conformal RT is used in the adjuvant setting.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Radioterapia Conformacional/métodos , Adulto , Neoplasias Encefálicas/patología , Fraccionamiento de la Dosis de Radiación , Estudios de Seguimiento , Glioblastoma/patología , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Proyectos Piloto , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA