Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 141(1): 142-53, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20371351

RESUMEN

Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.


Asunto(s)
Drosophila melanogaster/fisiología , Modelos Animales , Animales , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Estudio de Asociación del Genoma Completo , Corazón/embriología , Corazón/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Interferencia de ARN
2.
Neurobiol Dis ; 196: 106506, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38648865

RESUMEN

Imbalances of iron and dopamine metabolism along with mitochondrial dysfunction have been linked to the pathogenesis of Parkinson's disease (PD). We have previously suggested a direct link between iron homeostasis and dopamine metabolism, as dopamine can increase cellular uptake of iron into macrophages thereby promoting oxidative stress responses. In this study, we investigated the interplay between iron, dopamine, and mitochondrial activity in neuroblastoma SH-SY5Y cells and human induced pluripotent stem cell (hiPSC)-derived dopaminergic neurons differentiated from a healthy control and a PD patient with a mutation in the α-synuclein (SNCA) gene. In SH-SY5Y cells, dopamine treatment resulted in increased expression of the transmembrane iron transporters transferrin receptor 1 (TFR1), ferroportin (FPN), and mitoferrin2 (MFRN2) and intracellular iron accumulation, suggesting that dopamine may promote iron uptake. Furthermore, dopamine supplementation led to reduced mitochondrial fitness including decreased mitochondrial respiration, increased cytochrome c control efficiency, reduced mtDNA copy number and citrate synthase activity, increased oxidative stress and impaired aconitase activity. In dopaminergic neurons derived from a healthy control individual, dopamine showed comparable effects as observed in SH-SY5Y cells. The hiPSC-derived PD neurons harboring an endogenous SNCA mutation demonstrated altered mitochondrial iron homeostasis, reduced mitochondrial capacity along with increased oxidative stress and alterations of tricarboxylic acid cycle linked metabolic pathways compared with control neurons. Importantly, dopamine treatment of PD neurons promoted a rescue effect by increasing mitochondrial respiration, activating antioxidant stress response, and normalizing altered metabolite levels linked to mitochondrial function. These observations provide evidence that dopamine affects iron homeostasis, intracellular stress responses and mitochondrial function in healthy cells, while dopamine supplementation can restore the disturbed regulatory network in PD cells.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Homeostasis , Hierro , Mitocondrias , Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Homeostasis/fisiología , Homeostasis/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular Tumoral , Estrés Oxidativo/fisiología , Estrés Oxidativo/efectos de los fármacos
3.
J Transl Med ; 22(1): 59, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229174

RESUMEN

BACKGROUND: Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS: In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS: Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS: These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Neuroblastoma , Enfermedad de Parkinson , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Parkinson/genética , Péptidos
4.
Brain ; 146(7): 2753-2765, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36478228

RESUMEN

Biallelic mutations in PINK1/PRKN cause recessive Parkinson's disease. Given the established role of PINK1/Parkin in regulating mitochondrial dynamics, we explored mitochondrial DNA integrity and inflammation as disease modifiers in carriers of mutations in these genes. Mitochondrial DNA integrity was investigated in a large collection of biallelic (n = 84) and monoallelic (n = 170) carriers of PINK1/PRKN mutations, idiopathic Parkinson's disease patients (n = 67) and controls (n = 90). In addition, we studied global gene expression and serum cytokine levels in a subset. Affected and unaffected PINK1/PRKN monoallelic mutation carriers can be distinguished by heteroplasmic mitochondrial DNA variant load (area under the curve = 0.83, CI 0.74-0.93). Biallelic PINK1/PRKN mutation carriers harbour more heteroplasmic mitochondrial DNA variants in blood (P = 0.0006, Z = 3.63) compared to monoallelic mutation carriers. This enrichment was confirmed in induced pluripotent stem cell-derived (controls, n = 3; biallelic PRKN mutation carriers, n = 4) and post-mortem (control, n = 1; biallelic PRKN mutation carrier, n = 1) midbrain neurons. Last, the heteroplasmic mitochondrial DNA variant load correlated with IL6 levels in PINK1/PRKN mutation carriers (r = 0.57, P = 0.0074). PINK1/PRKN mutations predispose individuals to mitochondrial DNA variant accumulation in a dose- and disease-dependent manner.


Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , Humanos , ADN Mitocondrial/genética , Enfermedad de Parkinson/genética , Heteroplasmia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mutación/genética
5.
J Ren Nutr ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38521380

RESUMEN

OBJECTIVE: While diet plays a key role in chronic kidney disease (CKD) management, the potential for diet to impact CKD prevention in the general population is less clear. Using a priori knowledge, we derived disease-related dietary patterns (DPs) through reduced rank regression (RRR) and investigated associations with kidney function, separately focusing on generally healthy individuals and those with self-reported kidney diseases, hypertension, or diabetes mellitus. METHODS: Eight thousand six hundred eighty-six participants from the population-based Cooperative Health Research in South Tyrol study were split into a group free of kidney disease, hypertension and diabetes (n = 6,133) and a group with any of the 3 conditions (n = 2,553). Diet was assessed through the self-administered Global Allergy and Asthma Network of Excellence food frequency questionnaire and DPs were derived through RRR selecting food frequency questionnaire-derived sodium, potassium, phosphorus, and protein intake as mediators. Outcomes were creatinine-based estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, CKD and microalbuminuria. Multiple linear and logistic models were used to assess associations between RRR-based DPs and kidney outcomes separately in the 2 analytic groups. RESULTS: We identified 3 DPs, where high adherence reflected high levels of all nutrients (DP1), high potassium-phosphorus and low protein-sodium levels (DP2), and low potassium-sodium and high protein-phosphorus levels (DP3), respectively. We observed heterogeneous associations with kidney outcomes, varying by analytic group and sex. Kidney outcomes were much more strongly associated with DPs than with single nutrients. CONCLUSION: RRR is a feasible approach to estimate disease-related DPs and explore the combined effects of nutrients on kidney health. Heterogeneous associations across kidney outcomes suggest possible specificity to kidney function or damage. In individuals reporting kidney disease, hypertension or diabetes, specific dietary habits were associated with better kidney health, indicating that disease-specific dietary interventions can be effective for disease control.

6.
Cell Mol Life Sci ; 79(5): 283, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513611

RESUMEN

Mitochondria play important roles in the regulation of key cellular processes, including energy metabolism, oxidative stress response, and signaling towards cell death or survival, and are distinguished by carrying their own genome (mtDNA). Mitochondrial dysfunction has emerged as a prominent cellular mechanism involved in neurodegeneration, including Parkinson's disease (PD), a neurodegenerative movement disorder, characterized by progressive loss of dopaminergic neurons and the occurrence of proteinaceous Lewy body inclusions. The contribution of mtDNA variants to PD pathogenesis has long been debated and is still not clearly answered. Cytoplasmic hybrid (cybrid) cell models provided evidence for a contribution of mtDNA variants to the PD phenotype. However, conclusive evidence of mtDNA mutations as genetic cause of PD is still lacking. Several models have shown a role of somatic, rather than inherited mtDNA variants in the impairment of mitochondrial function and neurodegeneration. Accordingly, several nuclear genes driving inherited forms of PD are linked to mtDNA quality control mechanisms, and idiopathic as well as familial PD tissues present increased mtDNA damage. In this review, we highlight the use of cybrids in this PD research field and summarize various aspects of how and to what extent mtDNA variants may contribute to the etiology of PD.


Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Células Híbridas/metabolismo , Células Híbridas/patología , Mitocondrias/metabolismo , Enfermedad de Parkinson/patología
7.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834293

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and the leading cause of sudden cardiac death in young people. Mutations in genes that encode structural proteins of the cardiac sarcomere are the more frequent genetic cause of HCM. The disease is characterized by cardiomyocyte hypertrophy and myocardial fibrosis, which is defined as the excessive deposition of extracellular matrix proteins, mainly collagen I and III, in the myocardium. The development of fibrotic tissue in the heart adversely affects cardiac function. In this review, we discuss the latest evidence on how cardiac fibrosis is promoted, the role of cardiac fibroblasts, their interaction with cardiomyocytes, and their activation via the TGF-ß pathway, the primary intracellular signalling pathway regulating extracellular matrix turnover. Finally, we summarize new findings on profibrotic genes as well as genetic and non-genetic factors involved in the pathophysiology of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Humanos , Adolescente , Cardiomiopatía Hipertrófica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fibroblastos/metabolismo , Fibrosis
8.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768321

RESUMEN

Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
9.
J Cell Mol Med ; 26(13): 3687-3701, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35712781

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Adipogénesis/fisiología , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Muerte Súbita Cardíaca/patología , Humanos , Lípidos , Células del Estroma/metabolismo
10.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361881

RESUMEN

Mutations in the SZT2 gene have been associated with developmental and epileptic encephalopathy-18, a rare severe autosomal recessive neurologic disorder, characterized by psychomotor impairment/intellectual disability, dysmorphic facial features and early onset of refractory seizures. Here we report the generation of the first induced pluripotent stem cell (iPSC) lines from a patient with treatment-resistant epilepsy, carrying compound heterozygous mutations in SZT2 (Mut1: c.498G>T and Mut2: c.6553C>T), and his healthy heterozygous parents. Peripheral blood mononuclear cells were reprogrammed by a non-integrating Sendai virus-based reprogramming system. The generated human iPSC lines exhibited expression of the main pluripotency markers, the potential to differentiate into all three germ layers and presented a normal karyotype. These lines represent a valuable resource to study neurodevelopmental alterations, and to obtain mature, pathology-relevant neuronal populations as an in vitro model to perform functional assays and test the patient's responsiveness to novel antiepileptic treatments.


Asunto(s)
Epilepsia Generalizada , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares , Mutación , Heterocigoto , Proteínas del Tejido Nervioso/metabolismo
11.
Epidemiol Infect ; 149: e194, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34645534

RESUMEN

Estimating the spread of SARS-CoV-2 infection in communities is critical. We surveyed 2244 stratified random sample community members of the Gardena valley, a winter touristic area, amidst the first expansion phase of the COVID-19 pandemic in Europe. We measured agreement between Diasorin and Abbott serum bioassay outputs and the Abbott optimal discriminant threshold of serum neutralisation titres with recursive receiver operating characteristic curve. We analytically adjusted serum antibody tests for unbiased seroprevalence estimate and analysed the determinants of infection with non-response weighted multiple logistic regression. SARS-CoV-2 seroprevalence was 26.9% (95% CI 25.2-28.6) by June 2020. The bioassays had a modest agreement with each other. At a lower threshold than the manufacturer's recommended level, the Abbott assay reflected greater discrimination of serum neutralisation capacity. Seropositivity was associated with place and economic activity, not with sex or age. Symptoms like fever and weakness were age-dependent. SARS-CoV-2 mitigation strategies should account for context in high prevalence areas.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/epidemiología , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/diagnóstico , Prueba Serológica para COVID-19 , Femenino , Humanos , Inmunoglobulina G/sangre , Italia/epidemiología , Masculino , Pruebas de Neutralización , Prevalencia , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Estudios Seroepidemiológicos
12.
Nutr Metab Cardiovasc Dis ; 31(12): 3464-3473, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34627696

RESUMEN

BACKGROUND AND AIMS: Cardiovascular disease (CVD) is the leading cause of death in patients with non-alcoholic fatty liver disease (NAFLD), both with and without type 2 diabetes mellitus (T2DM). Cardiac autonomic dysfunction is a risk factor for CVD morbidity and mortality. The aim of this pilot study was to assess whether there is an association between NAFLD and impaired cardiac autonomic function. METHODS AND RESULTS: Among the first 4979 participants from the Cooperative Health Research in South Tyrol (CHRIS) study, we randomly recruited 173 individuals with T2DM and 183 age- and sex-matched nondiabetic controls. Participants underwent ultrasonography and vibration-controlled transient elastography (Fibroscan®, Echosens) to assess hepatic steatosis and liver stiffness. The low-to-high-frequency (LF/HF) power ratio and other heart rate variability (HRV) measures were calculated from a 20-min resting electrocardiogram (ECG) to derive a measure of cardiac sympathetic/parasympathetic imbalance. Among the 356 individuals recruited for the study, 117 had NAFLD and T2DM, 56 had T2DM alone, 68 had NAFLD alone, and 115 subjects had neither condition. Individuals with T2DM and NAFLD (adjusted odds ratio [OR] 4.29, 95% confidence intervals [CI] 1.90-10.6) and individuals with NAFLD alone (adjusted OR 3.41, 95% CI 1.59-7.29), but not those with T2DM alone, had a substantially increased risk of having cardiac sympathetic/parasympathetic imbalance, compared with those without NAFLD and T2DM. Logistic regression models were adjusted for age, sex, body mass index (BMI), hypertension, dyslipidemia, insulin resistance, hemoglobin A1c (HbA1c), C-reactive protein (CRP), and Fibroscan®-measured liver stiffness. CONCLUSIONS: NAFLD was associated with cardiac sympathetic/parasympathetic imbalance, regardless of the presence or absence of T2DM, liver stiffness, and other potential confounding factors.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Enfermedades Cardiovasculares/epidemiología , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Proyectos Piloto
13.
Bioinformatics ; 35(1): 69-76, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010787

RESUMEN

Motivation: Familial aggregation analysis is an important early step for characterizing the genetic determinants of phenotypes in epidemiological studies. To facilitate this analysis, a collection of methods to detect familial aggregation in large pedigrees has been made available recently. However, efficacy of these methods in real world scenarios remains largely unknown. Here, we assess the performance of five aggregation methods to identify individuals or groups of related individuals affected by a Mendelian trait within a large set of decoys. We investigate method performance under a representative set of combinations of causal variant penetrance, trait prevalence and number of affected generations in the pedigree. These methods are then applied to assess familial aggregation of familial hypercholesterolemia and stroke, in the context of the Cooperative Health Research in South Tyrol (CHRIS) study. Results: We find that in some situations statistical hypothesis testing with a binomial null distribution achieves performance similar to methods that are based on kinship information, while kinship based methods perform better when information is available on fewer generations. Potential case families from the CHRIS study are reported and the results are discussed taking into account insights from the performance assessment. Availability and implementation: The familial aggregation analysis package is freely available at the Bioconductor repository, http://www.bioconductor.org/packages/FamAgg. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Linaje , Programas Informáticos , Distribución Binomial , Variación Genética , Humanos , Epidemiología Molecular/métodos , Penetrancia
14.
Neurobiol Dis ; 121: 34-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30236862

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1α, encoded by PPARGC1A, is a transcriptional co-activator that has been implicated in the pathogenesis of neurodegenerative disorders. We recently discovered multiple new PPARGC1A transcripts that initiate from a novel promoter located far upstream of the reference gene promoter, are CNS-specific and are more abundant than reference gene transcripts in whole brain. These CNS-specific transcripts encode two main full-length and several truncated isoforms via alternative splicing. Truncated CNS-isoforms include 17 kDa proteins that lack the second LXXLL motif serving as an interaction site for several nuclear receptors. We now determined expression levels of CNS- and reference gene transcripts in 5 brain regions of 21, 8, and 13 deceased subjects with idiopathic PD, Lewy body dementia and controls without neurodegenerative disorders, respectively. We observed reductions of CNS-specific transcripts (encoding full-length isoforms) only in the substantia nigra pars compacta of PD and Lewy body dementia. However, in the substantia nigra and globus pallidus of PD cases we found an up-regulation of transcripts encoding the 17 kDa proteins that inhibited the co-activation of several transcription factors by full-length PGC-1α proteins in transfection assays. In two established animal models of PD, the PPARGC1A expression profiles differed from the profile in human PD in that the levels of CNS- and reference gene transcripts were decreased in several brain regions. Furthermore, we identified haplotypes in the CNS-specific region of PPARGC1A that appeared protective for PD in a clinical cohort and a post-mortem sample (P = .0002). Thus, functional and genetic studies support a role of the CNS-specific PPARGC1A locus in PD.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Parkinson/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Anciano , Anciano de 80 o más Años , Animales , Femenino , Sitios Genéticos , Humanos , Masculino , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética
15.
Hum Mol Genet ; 26(13): 2412-2425, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379402

RESUMEN

Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Anciano , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo
16.
J Transl Med ; 17(1): 408, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801616

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride accumulation in the hepatocytes in the absence of alcohol overconsumption, commonly associated with insulin resistance and obesity. Both NAFLD and type 2 diabetes (T2D) are characterized by an altered microbiota composition, however the role of the microbiota in NAFLD and T2D is not well understood. To assess the relationship between alteration in the microbiota and NAFLD while dissecting the role of T2D, we established a nested study on T2D and non-T2D individuals within the Cooperative Health Research In South Tyrol (CHRIS) study, called the CHRIS-NAFLD study. Here, we present the study protocol along with baseline and follow-up characteristics of study participants. METHODS: Among the first 4979 CHRIS study participants, 227 individuals with T2D were identified and recalled, along with 227 age- and sex-matched non-T2D individuals. Participants underwent ultrasound and transient elastography examination to evaluate the presence of hepatic steatosis and liver stiffness. Additionally, sampling of saliva and faeces, biochemical measurements and clinical interviews were carried out. RESULTS: We recruited 173 T2D and 183 non-T2D participants (78% overall response rate). Hepatic steatosis was more common in T2D (63.7%) than non-T2D (36.3%) participants. T2D participants also had higher levels of liver stiffness (median 4.8 kPa, interquartile range (IQR) 3.7, 5.9) than non-T2D participants (median 3.9 kPa, IQR 3.3, 5.1). The non-invasive scoring systems like the NAFLD fibrosis score (NFS) suggests an increased liver fibrosis in T2D (mean - 0.55, standard deviation, SD, 1.30) than non-T2D participants (mean - 1.30, SD, 1.17). DISCUSSION: Given the comprehensive biochemical and clinical characterization of study participants, once the bioinformatics classification of the microbiota will be completed, the CHRIS-NAFLD study will become a useful resource to further our understanding of the relationship between microbiota, T2D and NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2/microbiología , Microbiota , Enfermedad del Hígado Graso no Alcohólico/microbiología , Anciano , Bacterias/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Masculino , Síndrome Metabólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones
17.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31014028

RESUMEN

In early diabetes, hyperglycemia and the associated metabolic dysregulation promote early changes in the functional properties of cardiomyocytes, progressively leading to the appearance of the diabetic cardiomyopathy phenotype. Recently, the interplay between histone acetyltransferases (HAT) and histone deacetylases (HDAC) has emerged as a crucial factor in the development of cardiac disorders. The present study evaluates whether HDAC inhibition can prevent the development of cardiomyocyte contractile dysfunction induced by a short period of hyperglycemia, with focus on the potential underlying mechanisms. Cell contractility and calcium dynamics were measured in unloaded ventricular myocytes isolated from the heart of control and diabetic rats. Cardiomyocytes were either untreated or exposed to the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) for 90 min. Then, a fraction of each group of cells was used to evaluate the expression levels of proteins involved in the excitation-contraction coupling, and the cardiomyocyte metabolic activity, ATP content, and reactive oxygen species levels. SAHA treatment was able to counteract the initial functional derangement in cardiomyocytes by reducing cell oxidative damage. These findings suggest that early HDAC inhibition could be a promising adjuvant approach for preventing diabetes-induced cardiomyocyte oxidative damage, which triggers the pro-inflammatory signal cascade, mitochondrial damage, and ventricular dysfunction.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Vorinostat/farmacología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/patología , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
18.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754623

RESUMEN

Mutations in the PRKN gene (encoding parkin) have been linked to the most frequent known cause of recessive Parkinson's disease (PD), and parkin dysfunction represents a risk factor for sporadic PD. Parkin is widely neuroprotective through different cellular pathways, as it protects dopaminergic neurons from apoptosis in a series of cellular and animal models of PD. The mitochondrial protein apoptosis-inducing factor (AIF) is an important cell death effector, which, upon cellular stress in many paradigms, is redistributed from the mitochondria to the nucleus to function as a proapoptotic factor, mostly independent of caspase activity, while in normal mitochondria it functions as an antiapoptotic factor. AIF is known to participate in dopaminergic neuron loss in experimental PD models and in patients with PD. We, therefore, investigated possible crosstalk between parkin and AIF. By using immunoprecipitation and proximity ligation assays, we demonstrated a physical interaction between the two proteins. Nuclear AIF translocation was significantly reduced by parkin expression in neuroblastoma SH-SY5Y cells after exposure to an apoptogenic stimulus. These results were confirmed in primary murine cortical neurons, which showed a higher nuclear translocation of AIF in parkin-deficient neurons upon an excitotoxic stimulus. Our results indicate that the interaction of parkin with AIF interferes with the nuclear translocation of AIF, which might contribute to the neuroprotective activity of parkin.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Unión Proteica , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética
19.
BMC Genomics ; 19(1): 491, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940860

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is a genetic autosomal disease characterized by abnormal cell-cell adhesion, cardiomyocyte death, progressive fibro-adipose replacement of the myocardium, arrhythmias and sudden death. Several different cell types contribute to the pathogenesis of ACM, including, as recently described, cardiac stromal cells (CStCs). In the present study, we aim to identify ACM-specific expression profiles of human CStCs derived from endomyocardial biopsies of ACM patients and healthy individuals employing TaqMan Low Density Arrays for miRNA expression profiling, and high throughput sequencing for gene expression quantification. RESULTS: We identified 3 miRNAs and 272 genes as significantly differentially expressed at a 5% false discovery rate. Both the differentially expressed genes as well as the target genes of the ACM-specific miRNAs were found to be enriched in cell adhesion-related biological processes. Functional similarity and protein interaction-based network analyses performed on the identified deregulated genes, miRNA targets and known ACM-causative genes revealed clusters of highly related genes involved in cell adhesion, extracellular matrix organization, lipid transport and ephrin receptor signaling. CONCLUSIONS: We determined for the first time the coding and non-coding transcriptome characteristic of ACM cardiac stromal cells, finding evidence for a potential contribution of miRNAs, specifically miR-29b-3p, to ACM pathogenesis or phenotype maintenance.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomiopatías/genética , MicroARNs/genética , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Humanos
20.
Biogerontology ; 19(1): 81-94, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29270911

RESUMEN

Great amounts of omics data are generated in aging research, but their diverse and partly complementary nature requires integrative analysis approaches for investigating aging processes and connections to age-related diseases. To establish a broader picture of the genetic and epigenetic landscape of human aging we performed a large-scale meta-analysis of 6600 human genes by combining 35 datasets that cover aging hallmarks, longevity, changes in DNA methylation and gene expression, and different age-related diseases. To identify biological relationships between aging-associated genes we incorporated them into a protein interaction network and characterized their network neighborhoods. In particular, we computed a comprehensive landscape of more than 1000 human aging clusters, network regions where genes are highly connected and where gene products commonly participate in similar processes. In addition to clusters that capture known aging processes such as nutrient-sensing and mTOR signaling, we present a number of clusters with a putative functional role in linking different aging processes as promising candidates for follow-up studies. To enable their detailed exploration, all datasets and aging clusters are made freely available via an interactive website ( https://gemex.eurac.edu/bioinf/age/ ).


Asunto(s)
Envejecimiento/genética , Longevidad/genética , Análisis por Conglomerados , Metilación de ADN , Conjuntos de Datos como Asunto , Expresión Génica , Humanos , Metaanálisis en Red
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA