Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sleep Med ; 119: 188-191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692221

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a rare neurological disorder primarily associated with mutations in the methyl-CpG-binding protein 2 (MECP2) gene. The syndrome is characterized by cognitive, social, and physical impairments, as well as sleep disorders and epilepsy. Notably, dysfunction of the autonomic nervous system is a key feature of the syndrome. Although Heart Rate Variability (HRV) has been used to investigate autonomic nervous system dysfunction in RTT during wakefulness, there is still a significant lack of information regarding the same during sleep. Therefore, our aim was to investigate cardiovascular autonomic modulation during sleep in subjects with RTT compared to an age-matched healthy control group (HC). METHOD: A complete overnight polysomnographic (PSG) recording was obtained from 11 patients with Rett syndrome (all females, 10 ± 4 years old) and 11 HC (all females, 11 ± 4 years old; p = 0.48). Electrocardiogram and breathing data were extracted from PSG and divided into wake, non-REM, and REM sleep stages. Cardiac autonomic control was assessed using symbolic non-linear heart rate variability analysis. The symbolic analysis identified three patterns: 0 V% (sympathetic), 2UV%, and 2LV% (vagal). RESULTS: The 0 V% was higher in the RTT group than in the HC group during wake, non-REM, and REM stages (p < 0.01), while the 2LV and 2UV% were lower during wake and sleep stages (p < 0.01). However, the 0 V% increased similarly from the wake to the REM stage in both RTT and HC groups. CONCLUSIONS: Therefore, the sympatho-vagal balance shifted towards sympathetic predominance and vagal withdrawal during wake and sleep in RTT, although cardiac autonomic dynamics were preserved during sleep.


Asunto(s)
Frecuencia Cardíaca , Polisomnografía , Síndrome de Rett , Vigilia , Humanos , Síndrome de Rett/fisiopatología , Síndrome de Rett/complicaciones , Femenino , Frecuencia Cardíaca/fisiología , Niño , Vigilia/fisiología , Adolescente , Sistema Nervioso Simpático/fisiopatología , Electrocardiografía , Sueño/fisiología , Fases del Sueño/fisiología , Corazón/fisiopatología , Corazón/inervación
2.
Front Neurol ; 15: 1388506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952469

RESUMEN

Background: Sleep is disturbed in Rett syndrome (RTT), a rare and progressive neurodevelopmental disorder primarily affecting female patients (prevalence 7.1/100,000 female patients) linked to pathogenic variations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Autonomic nervous system dysfunction with a predominance of the sympathetic nervous system (SNS) over the parasympathetic nervous system (PSNS) is reported in RTT, along with exercise fatigue and increased sudden death risk. The aim of the present study was to test the feasibility of a continuous 24 h non-invasive home monitoring of the biological vitals (biovitals) by an innovative wearable sensor device in pediatric and adolescent/adult RTT patients. Methods: A total of 10 female patients (mean age 18.3 ± 9.4 years, range 4.7-35.5 years) with typical RTT and MECP2 pathogenic variations were enrolled. Clinical severity was assessed by validated scales. Heart rate (HR), respiratory rate (RR), and skin temperature (SkT) were monitored by the YouCare Wearable Medical Device (Accyourate Group SpA, L'Aquila, Italy). The average percentage of maximum HR (HRmax%) was calculated. Heart rate variability (HRV) was expressed by consolidated time-domain and frequency-domain parameters. The HR/LF (low frequency) ratio, indicating SNS activation under dynamic exercise, was calculated. Simultaneous continuous measurement of indoor air quality variables was performed and the patients' contributions to the surrounding water vapor partial pressure [PH2O (pt)] and carbon dioxide [PCO2 (pt)] were indirectly estimated. Results: Of the 6,559.79 h of biovital recordings, 5051.03 h (77%) were valid for data interpretation. Sleep and wake hours were 9.0 ± 1.1 h and 14.9 ± 1.1 h, respectively. HRmax % [median: 71.86% (interquartile range 61.03-82%)] and HR/LF [median: 3.75 (interquartile range 3.19-5.05)] were elevated, independent from the wake-sleep cycle. The majority of HRV time- and frequency-domain parameters were significantly higher in the pediatric patients (p ≤ 0.031). The HRV HR/LF ratio was associated with phenotype severity, disease progression, clinical sleep disorder, subclinical hypoxia, and electroencephalographic observations of multifocal epileptic activity and general background slowing. Conclusion: Our findings indicate the feasibility of a continuous 24-h non-invasive home monitoring of biovital parameters in RTT. Moreover, for the first time, HRmax% and the HR/LF ratio were identified as potential objective markers of fatigue, illness severity, and disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA