RESUMEN
Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.
Asunto(s)
Caseínas , Endorfinas , Humanos , Animales , Caseínas/química , Caseínas/metabolismo , Caseínas/genética , Endorfinas/química , Endorfinas/metabolismo , Leche/química , Leche/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Péptidos Opioides/química , Péptidos Opioides/metabolismo , BovinosRESUMEN
BACKGROUND: An increasing incidence of metabolic disorders emphasizes the need to explore natural treatments. Spirulina, a microalga with a rich nutrient profile, offers a promising solution for obesity, diabetes, and inflammation. This study provides a meticulous analysis of spirulina powder, evaluating its physicochemical attributes and technofunctional properties through the use of advanced analytical techniques. RESULTS: Spirulina powder demonstrated strong flowability, substantial water and oil absorption capacity, and moderate foaming characteristics. The ethanolic extract of spirulina was found to be a repository of phenolic (6.93 mg GAE/g) and flavonoid (7.17 mg QE/g) compounds, manifesting considerable antioxidant activity with a 58.49 g kg-1 inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The extract also exhibited pronounced inhibitory effects on lipase and amylase enzymes, with inhibition percentages of 72.05 g kg-1 and 70.28 g kg-1, respectively, and displayed a glucose retention capacity of 1.28 mg dL-1 (68.52 g kg-1) in a dialysis membrane assay. These results suggest its efficacy in modulating obesity and glycemic control. The powder also showed a potent anti-inflammatory response by mitigating protein denaturation. CONCLUSION: Spirulina powder is a potent natural agent with multiple health benefits, meriting its incorporation into functional foods. It could be suitable for application in the food industry, offering a natural strategy to combat metabolic diseases. This research adds to the scientific literature on spirulina, paving the way for future research into its utilization. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Antioxidantes , Inflamación , Obesidad , Polvos , Spirulina , Spirulina/química , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Antioxidantes/química , Antioxidantes/farmacología , Polvos/química , Humanos , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Amilasas/metabolismo , Amilasas/antagonistas & inhibidores , Antiinflamatorios/química , Antiinflamatorios/farmacologíaRESUMEN
Vitamin B12, a water-soluble essential micronutrient, plays a pivotal role in numerous physiological processes in the human body. This review meticulously examines the structural complexity and the diverse mechanisms through which vitamin B12 exerts its preventive effects against a spectrum of health conditions, including pernicious anaemia, neurological disorders, obesity, diabetes, dyslipidaemia and complications in foetal development. The selection of articles for this review was conducted through a systematic search across multiple scientific databases, including PubMed, Scopus and Web of Science. Criteria for inclusion encompassed relevance to the biochemical impact of vitamin B12 on health, peer-reviewed status and publication within the last decade. Exclusion criteria were non-English articles and studies lacking empirical evidence. This stringent selection process ensured a comprehensive analysis of vitamin B12's multifaceted impact on health, covering its structure, bioavailable forms and mechanisms of action. Clinical studies highlighting its therapeutic potential, applications in food fortification and other utilizations are also discussed, underscoring the nutrient's versatility. This synthesis aims to provide a clear understanding of the integral role of vitamin B12 in maintaining human health and its potential in clinical and nutritional applications. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
BACKGROUND: The composition of extra virgin olive oil (EVOO) defines its sensory, nutritional, and human health benefits, and distinguishes it as a key component of the Mediterranean diet. Nevertheless, EVOO constituents are susceptible to degradation during processing and storage, which reduces the olive oil's quality and limits its shelf life. The present study investigated the effect of molecular filtration before storage and the effect of cool storage at 4 °C on the stability of 'Kolovi' EVOO, a variety originating from the Greek island of Lesvos, over a 24 month period. RESULTS: Storing EVOO at 4 °C positively affected free acidity, peroxide value, K268, fruity qualities, and concentrations of hydroxytyrosol, tyrosol, ligstroside aglycone, lutein, and squalene, in comparison with the control sample stored at room temperature, particularly after 1 year. Molecular filtration significantly affected the ratio of unsaturated fatty acids to saturated fatty acids (UFAs/SFAs). Optimal preservation of parameters such as acidity value and lutein content was achieved by combining molecular filtration with refrigeration. CONCLUSIONS: The present study recommends storing EVOO in the refrigerator for up to 18 months. Based on the regulatory limits of the quality characteristics of acidity, peroxide value, K232 value and fruity sensory attributes, the shelf-life of the protected geographical indication (PGI) 'Kolovi' EVOO can reach 2 years under cool storage (4 °C) and with molecular filtration before storage. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Almacenamiento de Alimentos , Aceite de Oliva , Refrigeración , Aceite de Oliva/química , Humanos , Filtración , Frutas/química , Olea/química , Grecia , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentaciónRESUMEN
Ferulic acid ((E)-3-(4-hydroxy-3-methoxy-phenyl) prop-2-enoic acid) is a derivative of caffeic acid found in most plants. This abundant phenolic compound exhibits significant antioxidant capacity and a broad spectrum of therapeutic effects, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, cardiovascular and neuroprotective activities. It is absorbed more quickly by the body and stays in the bloodstream for a longer period compared with other phenolic acids. It is widely used in the food (namely whole grains, fruits, vegetables and coffee), pharmaceutical and cosmetics industries. The current review highlights ferulic acid and its pharmacological activities, reported mechanisms of action, food applications (food preservative, food additive, food processing, food supplements and in food packaging in the form of edible films) and role in human health. In the future, the demand for ferulic acid in the food and pharmaceutical industries will increase. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMEN
Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.
Asunto(s)
Fitoquímicos , Fitosteroles , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Polifenoles/uso terapéutico , Polifenoles/química , Suplementos Dietéticos , Antioxidantes/uso terapéuticoRESUMEN
Today, the use of natural biodegradable materials in the production processes is more and more adopted by industry to achieve cyclic economy targets and to improve environmental and human health indexes. Active packaging is the latest trend for food preservation. In this work, nanostructures were prepared by incorporation of thyme oil with natural natrium-montmorillonite and organo-montmorillonite with two different techniques, direct impregnation and the green evaporation-adsorption process. Such nanostructures were mixed with poly-L-lactic-acid for the first time via an extrusion molding process to develop a new packaging film. Comparisons of morphological, mechanical, and other basic properties for food packaging were carried out via XRD, FTIR, TG, SEM/EDS, oxygen and water vapor permeation, and antimicrobial and antioxidant activity for the first time. Results showed that poly-L-lactic-acid could be modified with clays and essential oils to produce improved active packaging films. The final product exhibits food odor prevention characteristics and shelf-life extension capabilities, and it could be used for active packaging. The films based on OrgMt clay seems to be more promising, while the thyme oil addition improves their behavior as active packaging. The PLLA/3%TO@OrgMt and PLLA/5%TO@OrgMt films were qualified between the tested samples as the most promising materials for this purpose.
Asunto(s)
Antioxidantes/química , Bentonita/química , Embalaje de Alimentos , Membranas Artificiales , Nanoestructuras/química , Aceites de Plantas/química , Poliésteres/química , Sodio/química , Timol/química , Thymus (Planta)/química , Antiinfecciosos , Fenómenos Químicos , Fenómenos Mecánicos , Nanoestructuras/ultraestructura , Análisis EspectralRESUMEN
In this study, the volatile compound profiles of gurum seed oil were determined using two methods: supercritical CO2 extraction (SFE) and the screw press process (SPP). For volatile compounds extraction and identification, headspace solid-phase micro-extraction (HS-SPME) and GC-MS were used, respectively. A total number of 56 volatile compounds were revealed and identified in oil extracted by SFE, while only 40 compounds were detected in extracted oil by SPP. Acids, aldehydes, esters, ketones, furans, and other components were present in the highest ratio in oil extracted by SFE. In contrast, alcohols and alkenes were found in the highest proportion in oil extracted by SPP. In this study, it was observed that SFE showed an increase in the amounts of volatile compounds and favorably impacted the aroma of gurum seed oil. The results reveal that different extraction methods significantly impact the volatile components of gurum seed oil, and this study can help evaluate the quality of the oil extracted from gurum seeds.
Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Ésteres/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Aceites de Plantas , Semillas/química , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisisRESUMEN
Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.
Asunto(s)
Miel , Thymus (Planta) , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Grecia , Miel/análisis , Espectrometría de Masas/métodos , Fenoles/análisis , Thymus (Planta)/químicaRESUMEN
Wine metabolomics constitutes a powerful discipline towards wine authenticity assessment through the simultaneous exploration of multiple classes of compounds in the wine matrix. Over the last decades, wines from autochthonous Greek grape varieties have become increasingly popular among wine connoisseurs, attracting great interest for their authentication and chemical characterization. In this work, 46 red wine samples from Agiorgitiko and Xinomavro grape varieties were collected from wineries in two important winemaking regions of Greece during two consecutive vintages and analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS). A targeted metabolomics methodology was developed, including the determination and quantification of 28 phenolic compounds from different classes (hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavonoids). Moreover, 86 compounds were detected and tentatively identified via a robust suspect screening workflow using an in-house database of 420 wine related compounds. Supervised chemometric techniques were employed to build an accurate and robust model to discriminate between two varieties.
Asunto(s)
Metabolómica , Vino/análisis , Análisis Discriminante , Grecia , Análisis de los Mínimos Cuadrados , Análisis de Componente Principal , Reproducibilidad de los ResultadosRESUMEN
The scope of this work is the study of a combined process including a dipping step into an oregano (Origanum vulgare ssp. hirtum) infusion (OV) followed by osmotic treatment of chicken fillets at 15 °C. Chicken fillets were immersed in an osmotic solution consisting of 40% glycerol and 5% NaCl with (OV/OD) and without (OD) prior antioxidant enrichment in a hypotonic oregano solution. A comparative shelf life study of all the samples (untreated, OD and OV/OD treated) was then conducted at 4 °C in order to assess the impact of this process on the quality and shelf life of chilled chicken fillets. Microbial growth, lipid oxidation and color/texture changes were measured throughout the chilled storage period. Rates of microbial growth of pretreated fillets were significantly reduced, mainly as a result of water activity decrease (OD step). Rancidity development closely related to off odors and sensory rejection was greatly inhibited in treated fillets owing to both inhibitory factors (OD and OV), with water-soluble phenols (OV step) exhibiting the main antioxidant effect. Shelf life of treated chicken fillets exhibited a more than three-fold increase as compared to the untreated samples based on both chemical and microbial spoilage indices, maintaining a positive and pleasant sensory profile throughout the storage period examined.
Asunto(s)
Antioxidantes/química , Análisis de los Alimentos/métodos , Carne/análisis , Aceites Volátiles/química , Origanum/química , Animales , Pollos , Color , Manipulación de Alimentos , Conservación de Alimentos , Tecnología de Alimentos/métodos , Cinética , Peroxidación de Lípido , Lípidos/química , Músculos/metabolismo , Odorantes , Ósmosis , Fenoles/química , TemperaturaRESUMEN
Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.
Asunto(s)
Antioxidantes/análisis , Benzaldehídos/análisis , Cinamatos/análisis , Flavonoides/análisis , Miel/análisis , Hidroxibenzoatos/análisis , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Antioxidantes/aislamiento & purificación , Benzaldehídos/aislamiento & purificación , Cinamatos/aislamiento & purificación , Exactitud de los Datos , Flavonoides/aislamiento & purificación , Grecia , Humanos , Hidroxibenzoatos/aislamiento & purificación , Polonia , Sensibilidad y EspecificidadRESUMEN
In recent years, isotopic analysis has been proven a valuable tool for the determination of the origin of various materials. In this article, we studied the 18O and 13C isotopic values of 210 olive oil samples that were originated from different regions in Greece in order to verify how these values are affected by the climate regime. We observed that the δ18O isotopic values range from 19.2 ‱ to 25.2 ‱ and the δ13C values range from -32.7 ‱ to -28.3 ‱. These differences between the olive oils' isotopic values depended on the regional temperature, the meteoric water, and the distance from the sea. Furthermore, we studied the 13C isotopic values of biophenolic extracts, and we observed that they have same capability to differentiate the geographic origin. Finally, we compared the isotopic values of Greek olive oils with samples from Italy, and we concluded that there is a great dependence of oxygen isotopes on the climatic characteristics of the different geographical areas.
Asunto(s)
Aceite de Oliva/química , Isótopos de Carbono/análisis , Clima , Grecia , Olea/química , Olea/crecimiento & desarrollo , Aceite de Oliva/aislamiento & purificación , Aceite de Oliva/normas , Isótopos de Oxígeno/análisis , Fenoles , Extractos Vegetales/química , Agua/químicaRESUMEN
Laetiporus sulphureus is a saprophyte belonging to a specific group of wood-decomposing Basidiomycetes growing on deciduous trees. This fungus has been characterized as a herbal medicine and is also known for its antimicrobial properties. In the present study, high energy extraction techniques using different solvents were compared to obtain maximum yield of the edible fungus Laetiporus sulphureus total lipids. The lipid classes and fatty acid composition of the fruiting bodies' total lipids has been studied using GC-FID and Iatroscan TLC-FID analysis. Among the lipids, the neutral lipids predominated followed by phospholipids and glycolipids. Triglycerides were the most abundant in the neutral lipid fraction, whereas phosphatidylcholine in phospholipids. The existence of relatively high amount of sterols may be correlated to fungus pharmaceutical properties. Total lipids were found to contain high unsaturated degree fatty acids (UFA/SFA>3.4) and dominated of C18:2ω-6, C18:1ω-9 and C16:0 fatty acids. Antibacterial and antifungal properties of mushrooms' lipid extracts from two different solvents were also examined. Results indicated that hexane extracts possessed better antifungal and slightly better antibacterial activity compared to chloroform extracts though both were less active than the commercial antimicrobial agents.
RESUMEN
Science and food industry must strive to ensure and improve edible insect's benefits, and especially their safety and nutritional value. This study investigated how various food substrates used in the rearing of Tenebrio molitor larvae influence their growth, the safety of the larvae, and the nutritional quality of the resulting flour. The main findings indicate that all samples showed significant differences in their nutritional profile, larval characteristics, and heavy metal content. Regarding the content of protein, fat and fiber it ranges from 44.1 to 51.8 %, 28.6-34.8 % and 10.5-14.9 %, respectively. These results suggest that insect diet is a very crucial parameter that can affect all that factors and must be taken into account, especially when they are intended as raw materials to be used for food production.
RESUMEN
Berberis aristata, commonly known as Indian barberry, has been traditionally used for its medicinal properties. Despite its recognized pharmacological benefits, its potential application in the food industry remains underexplored. This study aims to investigate the proximate analysis and techno-functional properties of Berberis aristata root powder to evaluate its feasibility as a functional food ingredient. The root powder of Berberis aristata was subjected to proximate analysis to determine its moisture, ash, protein, fat, fiber, and carbohydrate content. Techno-functional properties, including water and oil absorption capacity, emulsifying and foaming properties, and bulk density, were evaluated using standardized analytical techniques. The proximate analysis revealed a high fiber content and a significant number of bioactive compounds. The root powder exhibited favorable water and oil absorption capacities, making it suitable for use as a thickening and stabilizing agent. Emulsifying and foaming properties were comparable to conventional food additives, indicating their potential in various food formulations. The findings suggest that Berberis aristata root powder possesses desirable techno-functional properties that could be leveraged in the food industry. Its high fiber content and bioactive compounds offer additional health benefits, making it a promising candidate for functional food applications. Further research on its incorporation into different food matrices and its sensory attributes is recommended to fully establish its utility.
RESUMEN
Phytomedicine as an alternative to conventional medications which become more interested for researcher. Moringa Oleifera (M. Oleifera) has been used for centuries to cure a range of illnesses. M. Oleifera, commonly known as the miracle tree, ben oil tree, and drumstick tree, is a Moringaceae family plant whose latin name is Moringa oleifera Lam. It has a high concentration of macro and micronutrients, as well as other bioactive components, all of which are necessary for the body's correct function and the prevention of different disorders. The plant's leaves, seeds, and blooms are all edible and offer a variety of medicinal benefits. Moringa is used to treat diabetes, bacterial, viral, and fungal infections, inflammation, heart disease, cancer, and joint pain. Numerous studies of Moringa oleifera have emphasised its phytochemical components, future possibilities, and usefulness in a variety of domains, including ethnomedicine, whereas this review is a collection of previous discoveries and an update on all previous work.
RESUMEN
Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.
RESUMEN
Lactic acid bacteria (LAB) are widely applied for fermentation purposes in dairy and non-dairy food matrices with beneficial technological and health-promoting properties. This study describes the effect of two lactic acid bacteria, namely, Lactiplantibacillus paracasei SP5 and Pediococcus pentosaceus SP2, on the phenolic profiles, antioxidant activities, total phenolic content (TPC), carotenoid content, and sensorial profile of two different mixed fruit juices. After 48 h of fermentation, both LABs retained viability over 9 Log CFU/mL in both juices. The TPC, zeaxanthin + lutein, ß-carotene content, and antioxidant activity (AA) were elevated for both LABs and mixed juices after 48 h of fermentation compared to control samples. Regarding the phenolic profile, both juices exhibited a significant decrease in chlorogenic acid levels, while quinic acid and tyrosol concentrations showed notable increases.
RESUMEN
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper.