Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(50): 18504-18513, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38033201

RESUMEN

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs, allowing the construction of a 4-plex isobaric labeling strategy for enantiomer-resolved quantification through single step tagging. Additionally, the creative design of N,N-dimethyl-d-leucine (d-DiLeu) reagents offers an alternative approach to generate analytically equivalent internal references of d-AAs using d-DiLeu-labeled l-AAs. By labeling cost-effective l-AA standards using paired d- and l-DiLeu, this approach not only enables absolute quantitation of both d-AAs and l-AAs from complex biological matrices with enhanced precision but also significantly boosts the combined signal intensities from all isobaric channels, greatly improving the detection and quantitation of low-abundance AAs, particularly d-AAs. We term this quantitative strategy CHRISTMAS, which stands for chiral pair isobaric labeling strategy for multiplexed absolute quantitation. Leveraging the ion mobility collision cross section (CCS) alignment, interferences from coeluting isomers/isobars are effectively filtered out to provide improved quantitative accuracy. From wild-type and Alzheimer's disease (AD) mouse brains, we successfully quantified 20 l-AAs and 5 d-AAs. The significant presence and differential trends of certain d-AAs compared to those of their l-counterparts provide valuable insights into the involvement of d-AAs in aging, AD progression, and neurodegeneration.


Asunto(s)
Aminoácidos , Proteómica , Animales , Ratones , Aminoácidos/análisis , Proteómica/métodos , Leucina/química , Aminas , Cromatografía Liquida/métodos
2.
Brain ; 145(2): 500-516, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203088

RESUMEN

N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder, suggesting that aberrant cytosolic-to-endoplasmic reticulum flux of acetyl-CoA can be a mechanistic driver for the development of autism spectrum disorder. We therefore generated a SLC25A1 neuron transgenic mouse with overexpression specifically in the forebrain neurons. The mice displayed autistic-like behaviours with a jumping stereotypy. They exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia and altered synaptic plasticity and morphology. Finally, quantitative proteomic and acetyl-proteomic analyses revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosolic-to-endoplasmic reticulum acetyl-CoA flux and the development of an autistic-like phenotype.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Transportadores de Anión Orgánico , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Ácido Cítrico , Humanos , Ratones , Proteínas Mitocondriales/genética , Neuronas/metabolismo , Transportadores de Anión Orgánico/genética , Fenotipo , Proteómica
3.
J Neurochem ; 154(4): 404-423, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31945187

RESUMEN

Nε-lysine acetylation of nascent glycoproteins within the endoplasmic reticulum (ER) lumen regulates the efficiency of the secretory pathway. The ER acetylation machinery consists of the membrane transporter, acetyl-CoA transporter 1 (AT-1/SLC33A1), and two acetyltransferases, ATase1/NAT8B and ATase2/NAT8. Dysfunctional ER acetylation is associated with severe neurological diseases with duplication of AT-1/SLC33A1 being associated with autism spectrum disorder, intellectual disability, and dysmorphism. Neuron-specific AT-1 over-expression in the mouse alters neuron morphology and function, causing an autism-like phenotype, indicating that ER acetylation plays a key role in neurophysiology. As such, characterizing the molecular mechanisms that regulate the acetylation machinery could reveal critical information about its biology. By using structure-biochemistry approaches, we discovered that ATase1 and ATase2 share enzymatic properties but differ in that ATase1 is post-translationally regulated via acetylation. Furthermore, gene expression studies revealed that the promoters of AT-1, ATase1, and ATase2 contain functional binding sites for the neuron-related transcription factors cAMP response element-binding protein and the immediate-early genes c-FOS and c-JUN, and that ATase1 and ATase2 exhibit additional modes of transcriptional regulation relevant to aging and Alzheimer's disease. In vivo rodent gene expression experiments revealed that Atase2 is specifically induced following activity-dependent events. Finally, over-expression of either ATase1 or ATase2 was sufficient to increase the engagement of the secretory pathway in PC12 cells. Our results indicate important regulatory roles for ATase1 and ATase2 in neuron function with induction of ATase2 expression potentially serving as a critical event that adjusts the efficiency of the secretory pathway for activity-dependent neuronal functions.


Asunto(s)
Acetiltransferasas/metabolismo , Retículo Endoplásmico/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Vías Secretoras/fisiología , Acetilación , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células PC12 , Procesamiento Proteico-Postraduccional , Ratas , Ratas Endogámicas F344 , Transcripción Genética
4.
J Cell Sci ; 131(22)2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30446507

RESUMEN

Protein post-translational modifications (PTMs) take many shapes, have many effects and are necessary for cellular homeostasis. One of these PTMs, Nε-lysine acetylation, was thought to occur only in the mitochondria, cytosol and nucleus, but this paradigm was challenged in the past decade with the discovery of lysine acetylation in the lumen of the endoplasmic reticulum (ER). This process is governed by the ER acetylation machinery: the cytosol:ER-lumen acetyl-CoA transporter AT-1 (also known as SLC33A1), and the ER-resident lysine acetyltransferases ATase1 and ATase2 (also known as NAT8B and NAT8, respectively). This Review summarizes the more recent biochemical, cellular and mouse model studies that underscore the importance of the ER acetylation process in maintaining protein homeostasis and autophagy within the secretory pathway, and its impact on developmental and age-associated diseases.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Proteostasis/fisiología , Animales , Humanos , Ratones
5.
Anal Chem ; 91(20): 12942-12947, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31507162

RESUMEN

N-linked glycosylation, featuring various glycoforms, is one of the most common and complex protein post-translational modifications (PTMs) controlling protein structures and biological functions. It has been revealed that abnormal changes of protein N-glycosylation patterns are associated with many diseases. Hence, unraveling the disease-related alteration of glycosylation, especially the glycoforms, is crucial and beneficial to improving our understanding about the pathogenic mechanisms of various diseases. In past decades, given the capability of in situ mapping of biomolecules and their region-specific localizations, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been widely applied to the discovery of potential biomarkers for many diseases. In this study, we coupled a novel subatmospheric pressure (SubAP)/MALDI source with a Q Exactive HF hybrid quadrupole-orbitrap mass spectrometer for in situ imaging of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections. The utility of this new platform for N-glycan imaging analysis was demonstrated with a variety of FFPE tissue sections. A total of 55 N-glycans were successfully characterized and visualized from a FFPE mouse brain section. Furthermore, 29 N-glycans with different spatial distribution patterns could be identified from a FFPE mouse ovarian cancer tissue section. High-mannose N-glycans exhibited elevated expression levels in the tumor region, indicating the potential association of this type of N-glycans with tumor progression.


Asunto(s)
Encéfalo/metabolismo , Formaldehído/química , Neoplasias Ováricas/metabolismo , Polisacáridos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Femenino , Glicosilación , Humanos , Ratones , Neoplasias Ováricas/patología , Fijación del Tejido
7.
Brain ; 139(Pt 3): 937-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26787453

RESUMEN

The aberrant accumulation of toxic protein aggregates is a key feature of many neurodegenerative diseases, including Huntington's disease, amyotrophic lateral sclerosis and Alzheimer's disease. As such, improving normal proteostatic mechanisms is an active target for biomedical research. Although they share common pathological features, protein aggregates form in different subcellular locations. Nε-lysine acetylation in the lumen of the endoplasmic reticulum has recently emerged as a new mechanism to regulate the induction of autophagy. The endoplasmic reticulum acetylation machinery includes AT-1/SLC33A1, a membrane transporter that translocates acetyl-CoA from the cytosol into the endoplasmic reticulum lumen, and ATase1 and ATase2, two acetyltransferases that acetylate endoplasmic reticulum cargo proteins. Here, we used a mutant form of α-synuclein to show that inhibition of the endoplasmic reticulum acetylation machinery specifically improves autophagy-mediated disposal of toxic protein aggregates that form within the secretory pathway, but not those that form in the cytosol. Consequently, haploinsufficiency of AT-1/SLC33A1 in the mouse rescued Alzheimer's disease, but not Huntington's disease or amyotrophic lateral sclerosis. In fact, intracellular toxic protein aggregates in Alzheimer's disease form within the secretory pathway while in Huntington's disease and amyotrophic lateral sclerosis they form in different cellular compartments. Furthermore, biochemical inhibition of ATase1 and ATase2 was also able to rescue the Alzheimer's disease phenotype in a mouse model of the disease. Specifically, we observed reduced levels of soluble amyloid-ß aggregates, reduced amyloid-ß pathology, reduced phosphorylation of tau, improved synaptic plasticity, and increased lifespan of the animals. In conclusion, our results indicate that Nε-lysine acetylation in the endoplasmic reticulum lumen regulates normal proteostasis of the secretory pathway; they also support therapies targeting endoplasmic reticulum acetyltransferases, ATase1 and ATase2, for a subset of chronic degenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteínas de Transporte de Membrana/biosíntesis , Biosíntesis de Proteínas/fisiología , Vías Secretoras/fisiología , Enfermedad de Alzheimer/prevención & control , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Humanos , Ratones , Ratones Transgénicos , Procesamiento Proteico-Postraduccional/fisiología
8.
J Neurosci ; 34(20): 6772-89, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24828632

RESUMEN

The import of acetyl-CoA into the ER lumen by AT-1/SLC33A1 is essential for the N(ε)-lysine acetylation of ER-resident and ER-transiting proteins. A point-mutation (S113R) in AT-1 has been associated with a familial form of spastic paraplegia. Here, we report that AT-1S113R is unable to form homodimers in the ER membrane and is devoid of acetyl-CoA transport activity. The reduced influx of acetyl-CoA into the ER lumen results in reduced acetylation of ER proteins and an aberrant form of autophagy. Mice homozygous for the mutation display early developmental arrest. In contrast, heterozygous animals develop to full term, but display neurodegeneration and propensity to infections, inflammation, and cancer. The immune and cancer phenotypes are contingent on the presence of pathogens in the colony, whereas the nervous system phenotype is not. In conclusion, our results reveal a previously unknown aspect of acetyl-CoA metabolism that affects the immune and nervous systems and the risk for malignancies.


Asunto(s)
Acetilcoenzima A/metabolismo , Retículo Endoplásmico/metabolismo , Infecciones/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo , Degeneración Nerviosa/metabolismo , Acetilación , Animales , Infecciones/genética , Inflamación/genética , Ratones , Ratones Transgénicos , Neoplasias/genética , Degeneración Nerviosa/patología
9.
J Biol Chem ; 289(46): 32044-32055, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25301944

RESUMEN

The endoplasmic reticulum (ER) has two membrane-bound acetyltransferases responsible for the endoluminal N(ϵ)-lysine acetylation of ER-transiting and -resident proteins. Mutations that impair the ER-based acetylation machinery are associated with developmental defects and a familial form of spastic paraplegia. Deficient ER acetylation in the mouse leads to defects of the immune and nervous system. Here, we report that both ATase1 and ATase2 form homo- and heterodimers and associate with members of the oligosaccharyltransferase (OST) complex. In contrast to the OST, the ATases only modify correctly folded polypetides. Collectively, our studies suggest that one of the functions of the ATases is to work in concert with the OST and "select" correctly folded from unfolded/misfolded transiting polypeptides.


Asunto(s)
Acetiltransferasas/química , Retículo Endoplásmico/enzimología , Hexosiltransferasas/química , Proteínas de la Membrana/química , Péptidos/química , Acetilación , Animales , Bacillus anthracis/enzimología , Bacillus subtilis/enzimología , Secuencia de Bases , Escherichia coli/enzimología , Glicoproteínas/química , Humanos , Lisina/química , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , Salmonella enteritidis/enzimología
10.
Biochim Biophys Acta ; 1833(3): 686-97, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23247107

RESUMEN

The N(ε)-amino group of lysine residues can be transiently modified by the addition of an acetyl group. Recognized functions of N(ε)-lysine acetylation include regulation of activity, molecular stabilization and conformational assembly of a protein. For more than forty years lysine acetylation was thought to occur only in the cytosol and nucleus. Targets included cytoskeletal-associated proteins as well as transcription factors, histone proteins and proteins involved in DNA recombination and repair. However, in 2007 we reported that a type I membrane protein involved in the pathogenesis of Alzheimer's disease was transiently acetylated on the ε amino group of seven lysine residues while transiting along the secretory pathway. Surprisingly, the acetylation occurred in the lumen of the endoplasmic reticulum (ER) forcing us to reconsider old paradigms. Indeed, if lysine acetylation can occur in the lumen of the ER, then all the essential biochemical elements of the reaction must be available in the lumen of the organelle. Follow-up studies revealed the existence of ER-based acetyl-CoA:lysine acetyltransferases as well as a membrane transporter that translocates acetyl-CoA from the cytosol into the ER lumen. Large-scale proteomics showed that the list of substrates of the ER-based acetylation machinery includes both transiting and resident proteins. Finally, genetic studies revealed that this machinery is tightly linked to human diseases. Here, we describe these exciting findings as well as recent biochemical and cellular advances, and discuss possible impact on both human physiology and pathology.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Respuesta de Proteína Desplegada , Acetilación , Animales , Humanos
11.
Nat Commun ; 15(1): 5217, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890307

RESUMEN

Dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and dietary protein restriction extends the lifespan and healthspan of mice. In this study, we examined the effect of protein restriction (PR) on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. Here, we show that PR promotes leanness and glycemic control in 3xTg mice, specifically rescuing the glucose intolerance of 3xTg females. PR induces sex-specific alterations in circulating and brain metabolites, downregulating sphingolipid subclasses in 3xTg females. PR also reduces AD pathology and mTORC1 activity, increases autophagy, and improves the cognition of 3xTg mice. Finally, PR improves the survival of 3xTg mice. Our results suggest that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Dieta con Restricción de Proteínas , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Femenino , Masculino , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia , Intolerancia a la Glucosa/metabolismo , Esfingolípidos/metabolismo , Cognición , Ratones Endogámicos C57BL
12.
J Biol Chem ; 287(27): 22436-40, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22628546

RESUMEN

In addition to the nucleus, cytosol, and mitochondrial lumen, N(ε)-lysine acetylation also occurs in the lumen of the endoplasmic reticulum (ER). However, the impact of such an event on ER functions is still unknown. Here, we analyzed the "ER acetyl-lysine proteome" by nano-LC-MS/MS and discovered that a large number of ER-resident and -transiting proteins undergo N(ε)-lysine acetylation in the lumen of the organelle. The list of ER-resident proteins includes chaperones and enzymes involved with post-translational modification and folding. Grouping of all acetylated proteins into major functional categories suggests that the ER-based acetylation machinery regulates very diverse biological events. As such, it is predicted to play a fundamental role in human physiology as well as human pathology.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Acetilcoenzima A/metabolismo , Acetilación , Neoplasias Encefálicas , Calreticulina/química , Calreticulina/genética , Calreticulina/metabolismo , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Glioma , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Plásmidos , Pliegue de Proteína
13.
J Biol Chem ; 287(35): 29921-30, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22787145

RESUMEN

One of the main functions of the unfolded protein response is to ensure disposal of large protein aggregates that accumulate in the lumen of the endoplasmic reticulum (ER) whereas avoiding, at least under nonlethal levels of ER stress, cell death. When tightly controlled, autophagy-dependent ER-associated degradation (ERAD(II)) allows the cell to recover from the transient accumulation of protein aggregates; however, when unchecked, it can be detrimental and cause autophagic cell death/type 2 cell death. Here we show that IRE1/XBP1 controls the induction of autophagy/ERAD(II) during the unfolded protein response by activating the ER membrane transporter SLC33A1/AT-1, which ensures continuous supply of acetyl-CoA into the lumen of the ER. Failure to induce AT-1 leads to widespread autophagic cell death. Mechanistically, the regulation of the autophagic process involves N(ε)-lysine acetylation of Atg9A.


Asunto(s)
Autofagia/fisiología , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetilación , Animales , Proteínas Relacionadas con la Autofagia , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/genética , Endorribonucleasas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética , Proteínas de Transporte Vesicular , Proteína 1 de Unión a la X-Box
14.
J Biol Chem ; 287(11): 8424-33, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22267734

RESUMEN

The cellular levels of ß-site APP cleaving enzyme 1 (BACE1), the rate-limiting enzyme for the generation of the Alzheimer disease (AD) amyloid ß-peptide (Aß), are tightly regulated by two ER-based acetyl-CoA:lysine acetyltransferases, ATase1 and ATase2. Here we report that both acetyltransferases are expressed in neurons and glial cells, and are up-regulated in the brain of AD patients. We also report the identification of first and second generation compounds that inhibit ATase1/ATase2 and down-regulate the expression levels as well as activity of BACE1. The mechanism of action involves competitive and non-competitive inhibition as well as generation of unstable intermediates of the ATases that undergo degradation.


Asunto(s)
Acetiltransferasas/metabolismo , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/biosíntesis , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Neuroglía/metabolismo , Neuronas/metabolismo , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ratones Transgénicos , Neuroglía/patología , Neuronas/patología , Células PC12 , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Mol Metab ; 67: 101653, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513219

RESUMEN

BACKGROUND: Key cellular metabolites reflecting the immediate activity of metabolic enzymes as well as the functional metabolic state of intracellular organelles can act as powerful signal regulators to ensure the activation of homeostatic responses. The citrate/acetyl-CoA pathway, initially recognized for its role in intermediate metabolism, has emerged as a fundamental branch of this nutrient-sensing homeostatic response. Emerging studies indicate that fluctuations in acetyl-CoA availability within different cellular organelles and compartments provides substrate-level regulation of many biological functions. A fundamental aspect of these regulatory functions involves Nε-lysine acetylation. SCOPE OF REVIEW: Here, we will examine the emerging regulatory functions of the citrate/acetyl-CoA pathway and the specific role of the endoplasmic reticulum (ER) acetylation machinery in the maintenance of intracellular crosstalk and homeostasis. These functions will be analyzed in the context of associated human diseases and specific mouse models of dysfunctional ER acetylation and citrate/acetyl-CoA flux. A primary objective of this review is to highlight the complex yet integrated response of compartment- and organelle-specific Nε-lysine acetylation to the intracellular availability and flux of acetyl-CoA, linking this important post-translational modification to cellular metabolism. MAJOR CONCLUSIONS: The ER acetylation machinery regulates the proteostatic functions of the organelle as well as the metabolic crosstalk between different intracellular organelles and compartments. This crosstalk enables the cell to impart adaptive responses within the ER and the secretory pathway. However, it also enables the ER to impart adaptive responses within different cellular organelles and compartments. Defects in the homeostatic balance of acetyl-CoA flux and ER acetylation reflect different but converging disease states in humans as well as converging phenotypes in relevant mouse models. In conclusion, citrate and acetyl-CoA should not only be seen as metabolic substrates of intermediate metabolism but also as signaling molecules that direct functional adaptation of the cell to both intracellular and extracellular messages. Future discoveries in CoA biology and acetylation are likely to yield novel therapeutic approaches.


Asunto(s)
Ácido Cítrico , Lisina , Ratones , Animales , Humanos , Acetilcoenzima A/metabolismo , Lisina/metabolismo , Ácido Cítrico/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Retículo Endoplásmico/metabolismo , Citratos/metabolismo
16.
Nat Commun ; 14(1): 5185, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626051

RESUMEN

Single-cell (SC) analysis provides unique insight into individual cell dynamics and cell-to-cell heterogeneity. Here, we utilize trapped ion mobility separation coupled with dual-polarity ionization mass spectrometry imaging (MSI) to enable high-throughput in situ profiling of the SC lipidome. Multimodal SC imaging, in which dual-polarity-mode MSI is used to perform serial data acquisition runs on individual cells, significantly enhanced SC lipidome coverage. High-spatial resolution SC-MSI identifies both inter- and intracellular lipid heterogeneity; this heterogeneity is further explicated by Uniform Manifold Approximation and Projection and machine learning-driven classifications. We characterize SC lipidome alteration in response to stearoyl-CoA desaturase 1 inhibition and, additionally, identify cell-layer specific lipid distribution patterns in mouse cerebellar cortex. This integrated multimodal SC-MSI technology enables high-resolution spatial mapping of intercellular and cell-to-cell lipidome heterogeneity, SC lipidome remodeling induced by pharmacological intervention, and region-specific lipid diversity within tissue.


Asunto(s)
Lipidómica , Imagen Multimodal , Animales , Ratones , Cerebelo , Espectrometría de Masas , Lípidos
17.
Commun Biol ; 6(1): 926, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689798

RESUMEN

Cytosolic citrate is imported from the mitochondria by SLC25A1, and from the extracellular milieu by SLC13A5. In the cytosol, citrate is used by ACLY to generate acetyl-CoA, which can then be exported to the endoplasmic reticulum (ER) by SLC33A1. Here, we report the generation of mice with systemic overexpression (sTg) of SLC25A1 or SLC13A5. Both animals displayed increased cytosolic levels of citrate and acetyl-CoA; however, SLC13A5 sTg mice developed a progeria-like phenotype with premature death, while SLC25A1 sTg mice did not. Analysis of the metabolic profile revealed widespread differences. Furthermore, SLC13A5 sTg mice displayed increased engagement of the ER acetylation machinery through SLC33A1, while SLC25A1 sTg mice did not. In conclusion, our findings point to different biological responses to SLC13A5- or SLC25A1-mediated import of citrate and suggest that the directionality of the citrate/acetyl-CoA pathway can transduce different signals.


Asunto(s)
Citratos , Ácido Cítrico , Animales , Ratones , Acetilcoenzima A , Acetilación , Fenotipo
18.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808866

RESUMEN

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.

19.
Res Sq ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37790423

RESUMEN

Over the last decade, it has become evident that dietary protein is a critical regulator of metabolic health and aging. Low protein diets are associated with healthy aging in humans, and we and others have shown that dietary protein restriction (PR) extends the lifespan and healthspan of mice. Here, we examined the effect of PR on metabolic health and the development and progression of Alzheimer's disease (AD) in the 3xTg mouse model of AD. We found that PR has metabolic benefits for 3xTg mice and non-transgenic controls of both sexes, promoting leanness and glycemic control in 3xTg mice. We found that PR induces sex-specific alterations in circulating metabolites and in the brain lipidome, downregulating sphingolipid subclasses including ceramides, glucosylceramides, and sphingomyelins in 3xTg females. Consumption of a PR diet starting at 6 months of age reduced AD pathology in conjunction with reduced mTORC1 activity, increased autophagy, and had cognitive benefits for 3xTg mice. Finally, PR improved the survival of 3xTg mice. Our results demonstrate that PR slows the progression of AD at molecular and pathological levels, preserves cognition in this mouse model of AD, and suggests that PR or pharmaceutical interventions that mimic the effects of this diet may hold promise as a treatment for AD.

20.
J Cell Sci ; 123(Pt 19): 3378-88, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826464

RESUMEN

The transient or permanent modification of nascent proteins in the early secretory pathway is an essential cellular function that ensures correct folding and maturation of membrane and secreted proteins. We have recently described a new form of post-translational regulation of the membrane protein ß-site APP cleaving enzyme 1 (BACE1) involving transient lysine acetylation in the lumen of the endoplasmic reticulum (ER). The essential components of this process are two ER-based acetyl-CoA:lysine acetyltransferases, ATase1 and ATase2, and a membrane transporter that translocates acetyl-CoA into the lumen of the ER. Here, we report the functional identification of acetyl-CoA transporter 1 (AT-1) as the ER membrane acetyl-CoA transporter. We show that AT-1 regulates the acetylation status of ER-transiting proteins, including the membrane proteins BACE1, low-density lipoprotein receptor and amyloid precursor protein (APP). Finally, we show that AT-1 is essential for cell viability as its downregulation results in widespread cell death and induction of features characteristic of autophagy.


Asunto(s)
Membrana Celular/metabolismo , Supervivencia Celular , Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neuronas/metabolismo , Acetilación , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Autofagia/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Neuronas/patología , ARN Interferente Pequeño/genética , Vías Secretoras/genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA