RESUMEN
Tetrahydropyrans are abundantly found in marine natural products. The interesting biological properties of these compounds and their analogues make necessary the development of convenient procedures for their synthesis. In this paper, an atom economy access to tetrahydropyrans by intramolecular acid-mediated cyclization of silylated alkenols is described. p-TsOH has shown to be an efficient reagent to yield highly substituted tetrahydropyrans. Moreover, excellent diastereoselectivities are obtained both for unsubstituted and alkylsubstituted vinylsilyl alcohols. The methodology herein developed may potentially be applied to the synthesis of marine drugs derivatives.
Asunto(s)
Alquenos/química , Organismos Acuáticos/química , Productos Biológicos/química , Piranos/síntesis química , Ácidos/química , Alcoholes/química , Catálisis , Ciclización , Estructura Molecular , Piranos/química , EstereoisomerismoRESUMEN
BACKGROUND: Redness can greatly influence the freshness of sausages. A precise, rapid and noncontact analytical method or tool is needed to quantify the color. Hyperspectral imaging (HSI) is an emerging technique that integrates spectroscopy and imaging to obtain the spectral and spatial information simultaneously. In the present study, the redness of cooked sausages stored up to 57 days was predicted using HSI in tandem with multivariate data analysis. The mean spectra of the sausages were extracted from the hyperspectral images. Partial least squares regression (PLSR) and forward stepwise multiple regression (FSMR) models were used to develop the relavent spectral profiles with the redness of the cooked sausages. RESULTS: Ten important wavelengths were selected based on the regression coefficient values from the PLSR model. The PLSR model established using the full wavelengths presented a good performance, with Rc of 0.934 and a root mean square error of calibration of 0.642 (redness ranged between 14.99 and 21.48). The prediction maps for demonstrating evolution of redness in sausages were developed for the first time using R statistics (R Foundation for Statistical Computing) and Matlab (MathWorks Inc., Natick, MA, USA). CONCLUSION: HSI combined with PLSR and FSMR can be used to quantify and visualize evolution of sausage redness under different storage days. © 2017 Society of Chemical Industry.
Asunto(s)
Productos de la Carne/análisis , Espectroscopía Infrarroja Corta/métodos , Animales , Culinaria , Almacenamiento de Alimentos , Japón , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Control de Calidad , PorcinosRESUMEN
The evolution during ripening of Beta vulgaris (var. Pablo) on colour and betalain composition, not previously conducted in conjunction in red beets, has been examined. According to the results, it could be asserted that the ripening stage significantly (p < 0.05) influenced on all the studied parameters. On the basis of the betalain content, the optimum ripening stage corresponded to a medium weigh-to-calibre ratio, in the light of the significantly (p < 0.05) higher content of betalains, especially betanin and vulgaxanthin I. Moreover, colour attributes also differed during ripening, having the medium-ripened beetroots a significantly (p < 0.05) more reddish hue (hab) and lower lightness (L*), probably due to the higher content of betaxanthins in this stage. The colour differences among red beets in the stage II and the rest of stages were visually appreciable (ΔE*ab > 3) and mainly qualitative. A new range of opportunities for diversification of colorant market, from a nutritional and colorimetric point of view, could be possible by employing red beets with different stages of ripening.
Asunto(s)
Beta vulgaris/química , Betacianinas/análisis , Betaxantinas/análisis , Ácidos Picolínicos/análisis , Beta vulgaris/fisiología , Cromatografía Líquida de Alta Presión , Color , Colorimetría , Raíces de Plantas/química , Raíces de Plantas/fisiologíaRESUMEN
Bee pollen is a hive product, resulting from floral pollen agglutination by worker bees and it is characterized by its excellent bioactive and nutritional composition. Currently, research is focused on bee pollen applications on food industry, because this product has been considered an excellent source of compounds for human nutrition. It is also important in some industries, where color and particle size are important characteristics for production. Due to the granular nature of bee pollen, conventional colorimetry does not allow describing color correctly; thus, digital image analysis is a better alternative. This technique could also allow classifying bee pollen according to its appearance beyond the color. Consequently, the aim of this work was to develop a novel methodology for image data processing to classify bee pollen as ingredient in food industry. Seven color groups in samples were established regarding harvest month and particle size. It was possible to calculate the percentage of each color group in all samples. This methodology also allowed selecting each fraction for different applications in food industry using colorimetry, granulometry and the relationship between both of them.
Asunto(s)
Colorimetría/métodos , Análisis de los Alimentos/métodos , Ingredientes Alimentarios/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Polen/química , Animales , Abejas , Brassica , Colombia , Color , Eucalyptus , Flores , Alimentos Funcionales , Tamaño de la PartículaRESUMEN
This work includes the evaluation of 168 samples of raspberries 'Glen Lyon', representing whole maturation period, by colorimetric and near infrared imaging techniques, as well as the quantification of total phenols, total anthocyanins and antioxidant activity by chemical methods. Samples showed significant differences depending on the maturation stage using CIELAB colour parameters and total anthocyanins content. The application of partial least squares regression allowed predicting the chemical features from image analysis data, with coefficients of determination (R2) up to 0.75. The best prediction for total anthocyanins including colorimetric data was observed. The proposed methodology can be used as a reference method for assessing important quality attributes of raspberries. Moreover, it is useful, rapid and accurate automatic inspection method.
RESUMEN
A versatile method for the synthesis of dioxaspiroundecanes through a tandem Sakurai-Prins cyclization of allylsilyl alcohols in the presence of TMSOTf is described. The process is general and highly stereoselective with total control in the creation of three new stereogenic centers in a single step. Moreover, a very interesting chemoselectivity has been observed depending on the nature of the catalyst used or the substitution of the trishomoallylic alcohol, since the same reaction under BF3·OEt2 catalysis or using alcohols with allylic substituents provides exclusively the corresponding oxocanes, by a direct silyl-Prins cyclization.
RESUMEN
Two different mechanism pathways are observed for the reaction of allylsilyl alcohols 1 and aldehydes in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf). In the case of allylsilyl alcohols without allylic substituents, the reaction gives dioxaspirodecanes, which are the products of a tandem Sakurai-Prins cyclization. In contrast, allylsilyl alcohols with an allylic substituent (R(2)≠H) selectively provide oxepanes, thus corresponding to a direct silyl-Prins cyclization. Both types of product are obtained with excellent stereoselectivity. Theoretical studies have been performed to obtain some rationalization for the observed stereoselectivity.
Asunto(s)
Alcoholes/química , Aldehídos/química , Mesilatos/química , Compuestos de Trimetilsililo/química , Compuestos Alílicos/química , Catálisis , Ciclización , Compuestos de Espiro/química , EstereoisomerismoRESUMEN
The moisture content of immersion vacuum-cooled sausages with modified casings containing citrus fruit extracts under different storage conditions was studied using hyperspectral imaging (HSI) associated with chemometrics. Different pre-processing combinations were applied to improve the robustness of the model. The partial least squares regression model, employing the full reflectance spectrum with pre-treatment of the standard normal variate, showed calibration coefficients of determination (Rc2) of 0.6160 and a root mean square error of calibration (RMSEC) of 2.8130%. For the first time, prediction maps developed via HSI visualized the distribution of moisture content in the immersion vacuum-cooled sausages with unique modified casings in response to fluctuating storage conditions. The prediction maps showed exact parts with high water content, which will help us to monitor and prevent mold growth. The combination of HSI with multivariate analysis not only quantifies changes in moisture content but also visually represents them in response to various casing treatments under different storage conditions, illustrating the significant potential for real-time inspection and early mold detection in sausages within the processed meat industry.
RESUMEN
Introduction: An investigation was conducted using a hyperspectral imaging (HSI) system to non-invasively estimate adenosine triphosphate (ATP) content in vacuum packaged sausages in different modified casing treatments added with orange extracts after a year of storage at 4°C. Methods: Various pre-processing combinations were applied to the spectra to enhance the performance of partial least squares regression (PLSR). Results and discussion: PLSR models, utilising the full absorbance spectrum with pre-treatment of standard normal variate combined with 1st derivative,exhibited prediction coefficients of determination (Rp2) reaching up to 0.6629. A distribution map developed through MATLAB was employed to display the location and concentration of ATP content in these unique sausages for the first time. The integration of HSI and multivariate analysis not only quantifies but also visually represents the changes in ATP content response to the different casing treatments, demonstrating the significant potential for real-time inspection in the processed meat industry.
RESUMEN
Camu-camu (Myrciaria dubia) is a tropical fruit known for its content of bioactive compounds. This study aimed to evaluate physicochemically, morphologically, andsensorialpowders from camu-camu obtained by spray-drying at two inlet temperatures (150 °C and 180 °C) with three encapsulating agents (maltodextrin, whey protein and a 50:50 mixture of both) and by freeze-drying of whole fruit. The use of maltodextrin protected bet anthocyanins (cyanidin-3-glucoside (C3G) and delphinidin-3-glucoside (D3G)), but whey protein showed a better protective effect on ascorbic and malic acids. These facts were confirmed during the storage stability test, finding that relative humidity is a critical variable in preserving the bioactive compounds of camu-camu powders. The powders with the highest content of bioactive compounds were added to a yogurt and a white grape juice, and then sensory evaluated. The bioaccessibility studies in gastric and intestinal phases showed better recovery percentages of bioactive compounds in camu-camu powders (up to 60.8 %) and beverages (up to 90 %) for C3G, D3G, ascorbic acid, and malic acid than in the fruit juice. Dehydration of camu-camu (M. dubia) is a strategy to increase the bioactive compounds stability, modulate the fruit sensory properties, and improve their bioavailability after incorporation in food matrices.
Asunto(s)
Antocianinas , Myrtaceae , Antocianinas/química , Polvos , Proteína de Suero de Leche , Ácido Ascórbico/análisis , Antioxidantes , Myrtaceae/químicaRESUMEN
Artisanal cheeses are part of the heritage and identity of different countries or regions. In this work, we investigated the spectral variability of a wide range of traditional Brazilian cheeses and compared the performance of different spectrometers to discriminate cheese types and predict compositional parameters. Spectra in the visible (vis) and near infrared (NIR) region were collected, using imaging (vis/NIR-HSI and NIR-HSI) and conventional (NIRS) spectrometers, and it was determined the chemical composition of seven types of cheeses produced in Brazil. Principal component analysis (PCA) showed that spectral variability in the vis/NIR spectrum is related to differences in color (yellowness index) and fat content, while in NIR there is a greater influence of productive steps and fat content. Partial least squares discriminant analysis (PLSDA) models based on spectral information showed greater accuracy than the model based on chemical composition to discriminate types of traditional Brazilian cheeses. Partial least squares (PLS) regression models based on vis/NIR-HSI, NIRS, NIR-HSI data and HSI spectroscopic data fusion (vis/NIR + NIR) demonstrated excellent performance to predict moisture content (RPD > 2.5), good ability to predict fat content (2.0 < RPD < 2.5) and can be used to discriminate between high and low protein values (â¼1.5 < RPD < 2.0). The results obtained for imaging and conventional equipment are comparable and sufficiently accurate, so that both can be adapted to predict the chemical composition of the Brazilian traditional cheeses used in this study according to the needs of the industry.
Asunto(s)
Queso , Imágenes Hiperespectrales , Análisis de Componente Principal , Espectroscopía Infrarroja Corta , Queso/análisis , Espectroscopía Infrarroja Corta/métodos , Imágenes Hiperespectrales/métodos , Brasil , Análisis Discriminante , Análisis de los Mínimos Cuadrados , ColorRESUMEN
The effect of different cooking methods (boiling, baking, steaming and microwaving) on the colour and texture of carrots, as well as on the bioaccessibility of carotenoids, was investigated in order to identify the more "sustainable cooking" methods. Cooking resulted in statistically significant increases in total carotenoid bioaccessibility, both with intensity and duration of treatments. In particular, significant increases in carotenoid bioaccessible content (CBC) were observed, ranging from 6.03-fold (microwave) to 8.90-fold (baking) for the most intense cooking conditions tested. Although the relative concentration of the colourless carotenoids (phytoene and phytofluene) in raw carrots is lower than that of provitamins A α- and ß-carotene, the bioaccessible content of the colourless ones is much higher. From an energy consumption standpoint and considering samples with the same tenderness, the highest CBC values per kWh decreased in the order microwaving > baking > water cooking > steaming. Our findings are important to help combat vitamin A deficiency since increases of up to â¼40-fold and â¼70-fold in the CBCs of the vitamin A precursors α- and ß-carotene, respectively, were observed. These results provide a basis for defining "sustainable cooking" as "cooking practices that optimize intensity, duration and other parameters leading to a more efficient use of energy to maximize the bioavailability of nutrients and other beneficial food components (such as bioactives) while ensuring food appeal and safety".
Asunto(s)
Carotenoides , Culinaria , Daucus carota , Vitamina A , Carotenoides/química , Carotenoides/metabolismo , Daucus carota/química , Vitamina A/análisis , Vitamina A/metabolismo , Disponibilidad Biológica , Provitaminas/metabolismo , beta Caroteno/análisis , Humanos , Color , CalorRESUMEN
The colour of red wine is due to the presence of anthocyanins and their derived pigments, with malvidin-3-O-glucoside being the most predominant. Due to their chemical conformation, anthocyanins are susceptible to several conditions and have limited stability. Through copigmentation processes, anthocyanins can interact non-covalently with other molecules to enhance their stability. As a natural source of proteins and peptides, grape seeds are of particular interest because they may be of significant techno-functional value in the modulation of wine quality characteristics, such as acting as copigments to enhance colour stability. The proposed methodology allowed predicting in-depth insights into the molecular-level nature of interaction between the identified peptides when complexed with malvidin 3-O-glucoside and their colour stabilising properties. Thereby, allowing a prior screening in silico to facilitate their future application in experimental assays, such as obtaining the tested peptides with the characteristics already studied by means of grape seed meal directed hydrolysis.
RESUMEN
The textural properties (hardness, springiness, gumminess, and adhesion) of 16-day stored sausages with different additions of orange extracts to the modified casing solution were estimated by response surface methodology (RSM) and a hyperspectral imaging system in the spectral range of 390-1100 nm. To improve the model performance, normalization, 1st derivative, 2nd derivative, standard normal variate (SNV), and multiplicative scatter correction (MSC) were applied for spectral pre-treatments. The raw, pretreated spectral data and textural attributes were fit to the partial least squares regression model. The RSM results show that the highest R2 value achieved at adhesion (77.57%) derived from a second-order polynomial model, and the interactive effects of soy lecithin and orange extracts on adhesion were significant (p < 0.05). The adhesion of the PLSR model developed from reflectance after SNV pretreatment possessed a higher calibration coefficient of determination (0.8744) than raw data (0.8591). The selected ten important wavelengths for gumminess and adhesion can simplify the model and can be used for convenient industrial applications.
RESUMEN
The pH values of sausages stuffed in natural hog casings with different modifications (soy lecithin, soy oil, orange extracts (OE) from waste orange peels, lactic acid in slush salt, and treatment time) after 16-day 4 °C storage were evaluated for the first time by hyperspectral imaging (350−1100 nm) coupled with response surface methodology (RSM). A partial least squares regression (PLSR) model was developed to relate the spectra to the pH of sausages. Spectral pretreatment, including first derivative, second derivative, multiplicative scatter correction (MSC), standard normal variate (SNV), normalization, and normalization, with different combinations was employed to improve model performance. RSM showed that only soy lecithin and OE interactively affected the pH of sausages (p < 0.05). The pH value decreased when the casing was treated with a higher concentration of soy lecithin with 0.26% OE. As the first and second derivatives are commonly used to eliminate the baseline shift, the PLSR model derived from absorbance pretreated by the first derivative in the full wavelengths showed a calibration coefficient of determination (R2) of 0.73 with a root mean square error of calibration of 0.4283. Twelve feature wavelengths were selected with a comparable R2 value compared with the full wavelengths. The prediction map enables the visualization of the pH evolution of sausages stuffed in the modified casings added with OE.
RESUMEN
Grape seed flour by-product (GSBP) is an economic and renewable source of proteins, increasingly being explored due to interesting technological application such as colour protection in rich-anthocyanins beverages. Globulin-like proteins from GSBP were characterised by proteomic and computational studies. MALDI TOF/TOF analysis revealed the presence of two 11S globulins (acid and basic), whose 3D structures have been elucidated for the first time in Vitis vinifera L. grape seeds by using homology models and molecular dynamics. The secondary structure showed 11 α-helices and 25 ß-sheets for acid and 12 α-helices and 24 ß-sheets for basic 11S globulins. Molecular docking results indicate that both grape seed 11S globulins could establish different types of non-covalent interactions (π-π) with malvidin 3-O-glucoside (wine anthocyanin), which suggest a possible colour protection similar to that occurring in copigmentation phenomenon. These findings provide valuable information of globulin family proteins that could be relevant in food industry applications.
Asunto(s)
Globulinas , Vitis , Antocianinas/química , Harina , Globulinas/química , Glucósidos/metabolismo , Simulación del Acoplamiento Molecular , Proteómica , Semillas , Vitis/químicaRESUMEN
The chemical composition of wine grapes changes qualitatively and quantitatively during the ripening process. In addition to the sugar content, which determines the alcohol content of the wine, it is necessary to consider the phenolic composition of the grape skins and seeds to obtain quality red wines. In this work, some imaging techniques have been used for the comprehensive characterisation of the chemical composition of red grapes (cv. Tempranillo and cv. Syrah) grown in a warm-climate region during two seasons. In addition, and for the first time, mathematical models trained with laboratory images have been extrapolated for using in field images, obtaining interesting results. Determination coefficients of 0.90 for sugars, 0.73 for total phenols, and 0.73 for individual anthocyanins in grape skins have been achieved with a portable hyperspectral camera between 400 and 1000 nm, and 0.83 for total and individual phenols in grape seeds with a desktop hyperspectral camera between 900 and 1700 nm.
RESUMEN
A useful strategy for cycloheptane annulations from oxo- and epoxyallylsilanes, prepared by silylcupration of allenes, has been developed, and their application to the stereoselective synthesis of 4-methylenecycloheptan-1-ols is of great potential in the construction of seven-membered ring natural products presented.
RESUMEN
The silylcupration of allene using a lower order silylcopper species gives an allylsilane-vinyl copper intermediate 2 which, in conjunction with an organolithium reagent, is able to participate in a one-pot multicoupling reaction with α,ß-unsaturated nitriles. The scope of this tandem reaction is studied and a possible mechanism pathway is outlined.
RESUMEN
The usefulness of digital image analysis in estimating sensory attributes of grape seeds in relation to maturation level was evaluated for the first time. Seeds from Syrah grapes harvested throughout the ripening period were grouped according to maturity using the DigiEye® system. The discriminant ability, homogeneity, repeatability, and uniformity of a sensory panel were assessed after training on grape seeds. The aim was to evaluate the use of digital image techniques in order to accurately establish the maturity level of grape seeds, based on sensory and textural features. All sensory attributes (color, hardness, cracking, vegetal, bitterness and astringency) showed significant (p < 0.05) correlations with the chemical maturity stage. Color and vegetal (sensory attributes), together with deformation energy (instrumental texture parameter) (De), allowed for the classification of the seeds into four real maturity stages, hence their usefulness as grape seed ripening indicators. Significant (p < 0.05) and high-correlation factors were also found between instrumental and sensory attributes. Therefore, digital analysis can be a useful tool to better define the maturity stage in the vineyard, and to dispose of grape seeds with well-defined sensory profiles for specific oenological applications. This could help to determine the optimal harvest date to manage winemaking, in order to produce high quality wines in warm climates.