Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Exp Bot ; 72(3): 873-884, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32877919

RESUMEN

The interaction between legumes and rhizobia leads to the establishment of a symbiotic relationship between plant and bacteria. This is characterized by the formation of a new organ, the nodule, which facilitates the fixation of atmospheric nitrogen (N2) by nitrogenase through the creation of a hypoxic environment. Nitric oxide (NO) accumulates at each stage of the symbiotic process. NO is involved in defense responses, nodule organogenesis and development, nitrogen fixation metabolism, and senescence induction. During symbiosis, either successively or simultaneously, NO regulates gene expression, modulates enzyme activities, and acts as a metabolic intermediate in energy regeneration processes via phytoglobin-NO respiration and the bacterial denitrification pathway. Due to the transition from normoxia to hypoxia during nodule formation, and the progressive presence of the bacterial partner in the growing nodules, NO production and degradation pathways change during the symbiotic process. This review analyzes the different source and degradation pathways of NO, and highlights the role of nitrate reductases and hemoproteins of both the plant and bacterial partners in the control of NO accumulation.


Asunto(s)
Nitrato Reductasas , Rhizobium , Simbiosis , Fabaceae , Hemoglobinas , Óxido Nítrico , Nitrógeno , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas
2.
New Phytol ; 227(1): 84-98, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32003030

RESUMEN

In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen-fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little-known. We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post-inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1-NO couple in the symbiosis. Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1-NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb-NO respiration to maintain the energetic state. This work highlights the regulatory role played by Phytogb1.1-NO couple in the successive stages of symbiosis.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Óxido Nítrico/metabolismo , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
3.
Nitric Oxide ; 68: 125-136, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28193486

RESUMEN

Plant glutathione peroxidases (Gpx) catalyse the reduction of various peroxides, such as hydrogen peroxide (H2O2), phospholipid hydroperoxides and peroxynitrite, but at the expense of thioredoxins rather than glutathione. A main function of plant Gpxs is the protection of biological membranes by scavenging phospholipid hydroperoxides, but some Gpxs have also been associated with H2O2 sensing and redox signal transduction. Nitric oxide (NO) is not only known to induce the expression of Gpx family members, but also to inhibit Gpx activity, presumably through the S-nitrosylation of conserved cysteine residues. In the present study, the effects of NO-donors on both the activity and S-nitrosylation state of purified Medicago truncatula Gpx1 were analyzed using biochemical assay measurements and a biotin-switch/mass spectrometry approach. MtGpx1 activity was only moderately inhibited by the NO-donors diethylamine-NONOate and S-nitrosoglutathione, and the inhibition may be reversed by DTT. The three conserved Cys of MtGpx1 were found to be modified through S-nitrosylation and S-glutathionylation, although to different extents, by diethylamine-NONOate and S-nitrosoglutathione, or by a combination of diethylamine-NONOate and reduced glutathione. The regulation of MtGpx1 and its possible involvement in the signaling process is discussed in the light of these results.


Asunto(s)
Glutatión Peroxidasa/metabolismo , Medicago truncatula/efectos de los fármacos , Óxido Nítrico/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Secuencia de Aminoácidos , Cromatografía de Gases y Espectrometría de Masas , Glutatión Peroxidasa/genética , Óxido Nítrico/metabolismo , Glutatión Peroxidasa GPX1
4.
Planta ; 243(1): 251-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26403286

RESUMEN

MAIN CONCLUSION: Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Medicago truncatula/enzimología , Micorrizas/fisiología , NADPH Oxidasas/genética , Genes Reporteros , Glomeromycota/citología , Captura por Microdisección con Láser , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/microbiología , Micorrizas/citología , NADPH Oxidasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simbiosis , Regulación hacia Arriba
5.
J Exp Bot ; 66(10): 2877-87, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25732535

RESUMEN

The specific interaction between legumes and Rhizobium-type bacteria leads to the establishment of a symbiotic relationship characterized by the formation of new differentiated organs named nodules, which provide a niche for bacterial nitrogen (N2) fixation. In the nodules, bacteria differentiate into bacteroids with the ability to fix atmospheric N2 via nitrogenase activity. As nitrogenase is strongly inhibited by oxygen, N2 fixation is made possible by the microaerophilic conditions prevailing in the nodules. Increasing evidence has shown the presence of NO during symbiosis, from early interaction steps between the plant and the bacterial partners to N2-fixing and senescence steps in mature nodules. Both the plant and the bacterial partners participate in NO synthesis. NO was found to be required for the optimal establishment of the symbiotic interaction. Transcriptomic analysis at an early stage of the symbiosis showed that NO is potentially involved in the repression of plant defence reactions, favouring the establishment of the plant-microbe interaction. In mature nodules, NO was shown to inhibit N2 fixation, but it was also demonstrated to have a regulatory role in nitrogen metabolism, to play a beneficial metabolic function for the maintenance of the energy status under hypoxic conditions, and to trigger nodule senescence. The present review provides an overview of NO sources and multifaceted effects from the early steps of the interaction to the senescence of the nodule, and presents several approaches which appear to be particularly promising in deciphering the roles of NO in N2-fixing symbioses.


Asunto(s)
Fabaceae/metabolismo , Óxido Nítrico/metabolismo , Fijación del Nitrógeno , Rhizobium/metabolismo , Simbiosis
6.
PLoS Pathog ; 8(1): e1002471, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22241996

RESUMEN

Root-knot nematodes (RKN) are obligatory plant parasitic worms that establish and maintain an intimate relationship with their host plants. During a compatible interaction, RKN induce the redifferentiation of root cells into multinucleate and hypertrophied giant cells essential for nematode growth and reproduction. These metabolically active feeding cells constitute the exclusive source of nutrients for the nematode. Detailed analysis of glutathione (GSH) and homoglutathione (hGSH) metabolism demonstrated the importance of these compounds for the success of nematode infection in Medicago truncatula. We reported quantification of GSH and hGSH and gene expression analysis showing that (h)GSH metabolism in neoformed gall organs differs from that in uninfected roots. Depletion of (h)GSH content impaired nematode egg mass formation and modified the sex ratio. In addition, gene expression and metabolomic analyses showed a substantial modification of starch and γ-aminobutyrate metabolism and of malate and glucose content in (h)GSH-depleted galls. Interestingly, these modifications did not occur in (h)GSH-depleted roots. These various results suggest that (h)GSH have a key role in the regulation of giant cell metabolism. The discovery of these specific plant regulatory elements could lead to the development of new pest management strategies against nematodes.


Asunto(s)
Glutatión/análogos & derivados , Interacciones Huésped-Parásitos/fisiología , Medicago truncatula/metabolismo , Medicago truncatula/parasitología , Nematodos/fisiología , Enfermedades de las Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Aminobutiratos/metabolismo , Animales , Regulación de la Expresión Génica de las Plantas , Glutatión/biosíntesis , Glutatión/genética , Glutatión/metabolismo , Medicago truncatula/genética , Raíces de Plantas/genética , Almidón/genética , Almidón/metabolismo
7.
Plant Physiol ; 161(1): 425-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23136381

RESUMEN

Medicago truncatula is one of the most studied model plants. Nevertheless, the genome of this legume remains incompletely determined. We used RNA-Seq to characterize the transcriptome during the early organogenesis of the nodule and during its functioning. We detected 37,333 expressed transcription units; to our knowledge, 1,670 had never been described before and were functionally annotated. We identified 7,595 new transcribed regions, mostly corresponding to 5' and 3' untranslated region extensions and new exons associated with 5,264 previously annotated genes. We also inferred 23,165 putative transcript isoforms from 6,587 genes and measured the abundance of transcripts for each isoform, which suggests an important role for alternative splicing in the generation of proteome diversity in M. truncatula. Finally, we carried out a differential expression analysis, which provided a comprehensive view of transcriptional reprogramming during nodulation. In particular, depletion of nitric oxide in roots inoculated with Sinorhizobium meliloti greatly increased our understanding of the role of this reactive species in the optimal establishment of the symbiotic interaction, revealing differential patterns of expression for 2,030 genes and pointing to the inhibition of the expression of defense genes.


Asunto(s)
Medicago truncatula/microbiología , Óxido Nítrico/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis , Transcriptoma , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Empalme Alternativo , Exones , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Medicago truncatula/genética , Medicago truncatula/metabolismo , Anotación de Secuencia Molecular , Nodulación de la Raíz de la Planta , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN de Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Environ Microbiol ; 15(3): 795-810, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22891731

RESUMEN

Legumes interact symbiotically with bacteria of the Rhizobiaceae to form nitrogen-fixing root nodules. We investigated the contribution of the three glutaredoxin (Grx)-encoding genes present in the Sinorhizobium meliloti genome to this symbiosis. SmGRX1 (CGYC active site) and SmGRX3 (CPYG) recombinant proteins displayed deglutathionylation activity in the 2-hydroethyldisulfide assay, whereas SmGRX2 (CGFS) did not. Mutation of SmGRX3 did not affect S. meliloti growth or symbiotic capacities. In contrast, SmGRX1 and SmGRX2 mutations decreased the growth of free-living bacteria and the nitrogen fixation capacity of bacteroids. Mutation of SmGRX1 led to nodule abortion and an absence of bacteroid differentiation, whereas SmGRX2 mutation decreased nodule development without modifying bacteroid development. The higher sensitivity of the Smgrx1 mutant strain as compared with wild-type strain to oxidative stress was associated with larger amounts of glutathionylated proteins. The Smgrx2 mutant strain displayed significantly lower levels of activity than the wild type for two iron-sulfur-containing enzymes, aconitase and succinate dehydrogenase. This lower level of activity could be associated with deregulation of the transcriptional activity of the RirA iron regulator and higher intracellular iron content. Thus, two S. meliloti Grx proteins are essential for symbiotic nitrogen fixation, playing independent roles in bacterial differentiation and the regulation of iron metabolism.


Asunto(s)
Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Hierro/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis , Fabaceae/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Mutación , Fijación del Nitrógeno/genética , Filogenia , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/clasificación , Sinorhizobium meliloti/crecimiento & desarrollo , Succinato Deshidrogenasa/metabolismo
9.
New Phytol ; 198(1): 179-189, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23347006

RESUMEN

Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Peróxido de Hidrógeno/farmacología , Medicago truncatula/genética , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/genética , Lipopolisacáridos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/enzimología , MicroARNs/genética , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Onio/farmacología , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/efectos de los fármacos , Sinorhizobium meliloti/genética , Simbiosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
10.
J Exp Bot ; 64(18): 5651-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24151304

RESUMEN

Leguminous biological nitrogen fixation (BNF) is very sensitive to environmental fluctuations. It is still contentious how BNF is regulated under stress conditions. The local or systemic control of BNF and the role played by reactive oxygen species (ROS) in such regulation have still not been elucidated completely. Cadmium, which belongs to the so-called heavy metals, is one of the most toxic substances released into the environment. The mechanisms involved in Cd toxicity are still not completely understood but the overproduction of ROS is one of its characteristic symptoms. In this work, we used a split-root system approach to study nodule BNF and the antioxidant machinery's response to the application of a mild Cd treatment on one side of a nodulated Medicago truncatula root system. Cd induced the majority of nodule antioxidants without generating any oxidative damage. Cd treatment also provoked BNF inhibition exclusively in nodules directly exposed to Cd, without provoking any effect on plant shoot biomass or chlorophyll content. The overall data suggest that the decline in BNF was not due to a generalized breakdown of the plant but to control exerted through leghaemoglobin/oxygen availability, affecting nitrogenase function.


Asunto(s)
Cadmio/toxicidad , Leghemoglobina/metabolismo , Medicago truncatula/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Antioxidantes/metabolismo , Cadmio/metabolismo , Medicago truncatula/metabolismo , Componentes Aéreos de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/efectos de los fármacos
11.
New Phytol ; 194(2): 511-522, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22360638

RESUMEN

The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.


Asunto(s)
Genes de Plantas/genética , Medicago/genética , Medicago/microbiología , Nematodos/fisiología , Rhizobium/fisiología , Simbiosis/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago/parasitología , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Nódulos de las Raíces de las Plantas/genética , Transcripción Genética , Transcriptoma/genética
12.
Plant Physiol ; 155(2): 1023-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139086

RESUMEN

Nitric oxide (NO) is a signaling and defense molecule of major importance in living organisms. In the model legume Medicago truncatula, NO production has been detected in the nitrogen fixation zone of the nodule, but the systems responsible for its synthesis are yet unknown and its role in symbiosis is far from being elucidated. In this work, using pharmacological and genetic approaches, we explored the enzymatic source of NO production in M. truncatula-Sinorhizobium meliloti nodules under normoxic and hypoxic conditions. When transferred from normoxia to hypoxia, nodule NO production was rapidly increased, indicating that NO production capacity is present in functioning nodules and may be promptly up-regulated in response to decreased oxygen availability. Contrary to roots and leaves, nodule NO production was stimulated by nitrate and nitrite and inhibited by tungstate, a nitrate reductase inhibitor. Nodules obtained with either plant nitrate reductase RNA interference double knockdown (MtNR1/2) or bacterial nitrate reductase-deficient (napA) and nitrite reductase-deficient (nirK) mutants, or both, exhibited reduced nitrate or nitrite reductase activities and NO production levels. Moreover, NO production in nodules was found to be inhibited by electron transfer chain inhibitors, and nodule energy state (ATP-ADP ratio) was significantly reduced when nodules were incubated in the presence of tungstate. Our data indicate that both plant and bacterial nitrate reductase and electron transfer chains are involved in NO synthesis. We propose the existence of a nitrate-NO respiration process in nodules that could play a role in the maintenance of the energy status required for nitrogen fixation under oxygen-limiting conditions.


Asunto(s)
Medicago truncatula/enzimología , Nitrato Reductasas/metabolismo , Óxido Nítrico/biosíntesis , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/fisiología , Sinorhizobium meliloti/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hipoxia de la Célula , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Medicago truncatula/genética , Medicago truncatula/microbiología , Mitocondrias/enzimología , Nitrato Reductasas/genética , Nitratos/farmacología , Nitritos/farmacología , Oxígeno/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Simbiosis , Compuestos de Tungsteno/farmacología
13.
New Phytol ; 189(2): 580-92, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21155825

RESUMEN

The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.


Asunto(s)
Medicago truncatula/enzimología , NADPH Oxidasas/metabolismo , Nódulos de las Raíces de las Plantas/enzimología , Simbiosis/fisiología , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Medicago truncatula/citología , Medicago truncatula/genética , Medicago truncatula/microbiología , Anotación de Secuencia Molecular , NADPH Oxidasas/genética , Fijación del Nitrógeno/genética , Fenotipo , Filogenia , Transporte de Proteínas , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología
14.
New Phytol ; 191(2): 405-417, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21457261

RESUMEN

Nitric oxide (NO) is a gaseous molecule that participates in numerous plant signalling pathways. It is involved in plant responses to pathogens and development processes such as seed germination, flowering and stomatal closure. Using a permeable NO-specific fluorescent probe and a bacterial reporter strain expressing the lacZ gene under the control of a NO-responsive promoter, we detected NO production in the first steps, during infection threads growth, of the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction. Nitric oxide was also detected, by confocal microscopy, in nodule primordia. Depletion of NO caused by cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-oxyl-3-oxide), an NO scavenger, resulted in a significant delay in nodule appearance. The overexpression of a bacterial hmp gene, encoding a flavohaemoglobin able to scavenge NO, under the control of a nodule-specific promoter (pENOD20) in transgenic roots, led to the same phenotype. The NO scavenging resulting from these approaches provoked the downregulation of plant genes involved in nodule development, such as MtCRE1 and MtCCS52A. Furthermore, an Hmp-overexpressing S. meliloti mutant strain was found to be less competitive than the wild type in the nodulation process. Taken together, these results indicate that NO is required for an optimal establishment of the M. truncatula-S. meliloti symbiotic interaction.


Asunto(s)
Medicago truncatula/fisiología , Óxido Nítrico/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/fisiología , Simbiosis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoatos/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación hacia Abajo , Depuradores de Radicales Libres , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Hemoproteínas/genética , Hemoproteínas/metabolismo , Interacciones Huésped-Patógeno , Imidazoles/farmacología , Medicago truncatula/genética , Medicago truncatula/microbiología , Mutación , Óxido Nítrico/antagonistas & inhibidores , Fijación del Nitrógeno , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Sinorhizobium meliloti/genética
15.
J Exp Bot ; 62(3): 939-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21071678

RESUMEN

AtNoa1/Rif1 (formerly referred to as AtNos1) has been shown to modulate nitric oxide (NO) content in Arabidopsis. As NO generation in the legume-rhizobium symbiosis has been shown, the involvement of an AtNoa1/Rif1 orthologue from Medicago truncatula (MtNoa1/Rif1) during its symbiotic interaction with Sinorhizobium meliloti has been studied. The expression of MtNoa1/Rif1 appeared to occur mainly in nodule vascular bundles and the meristematic zone. Using an RNA interference strategy, transgenic roots exhibiting a significantly decreased level of MtNoa1/Rif1 expression were analysed. NO production was assessed using a fluorescent probe, and the symbiotic capacities of the composite plants upon infection with Sinorhizobium meliloti were determined. The decrease in MtNoa1/Rif1 expression level resulted in a decrease in NO production in roots, but not in symbiotic nodules, indicating a different regulation of NO synthesis in these organs. However, it significantly lowered the nodule number and the nitrogen fixation capacity of the functional nodules. Although having no influence on NO production in nodules, MtNOA1/RIF1 significantly affected the establishment and the functioning of the symbiotic interaction. The impairment of plastid functioning may explain this phenotype.


Asunto(s)
Medicago truncatula/enzimología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Sinorhizobium meliloti/fisiología , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Medicago truncatula/fisiología , Óxido Nítrico Sintasa/genética , Fijación del Nitrógeno , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis
16.
Plant Physiol ; 151(3): 1186-96, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19587096

RESUMEN

Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.


Asunto(s)
Glutatión/análogos & derivados , Medicago truncatula/crecimiento & desarrollo , Nodulación de la Raíz de la Planta , Sinorhizobium meliloti/fisiología , Simbiosis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glutatión/deficiencia , Glutatión/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Front Plant Sci ; 11: 1313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013954

RESUMEN

Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (MtNR1, MtNR2, and MtNR3) present in the Medicago truncatula genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between M. truncatula and Sinorhizobium meliloti. Our results show that MtNR1 and MtNR2 gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N2-fixing nodules. Using an in vivo NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N2-fixing symbiosis and provide a first explanation of its role in this process.

18.
Mol Plant Microbe Interact ; 21(6): 781-90, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18624641

RESUMEN

Nitric oxide (NO) is involved in diverse physiological processes in plants, including growth, development, response to pathogens, and interactions with beneficial microorganisms. In this work, a dedicated microarray representing the widest database available of NO-related transcripts in plants has been produced with 999 genes identified by a cDNA amplified fragment length polymorphism analysis as modulated in Medicago truncatula roots treated with two NO donors. The microarray then was used to monitor the expression of NO-responsive genes in M. truncatula during the incompatible interaction with the foliar pathogen Colletotrichum trifolii race 1 and during the symbiotic interaction with Sinorhizobium meliloti 1,021. A wide modulation of NO-related genes has been detected during the hypersensitive reaction or during nodule formation and is discussed with special emphasis on the physiological relevance of these genes in the context of the two biotic interactions. This work clearly shows that NO-responsive genes behave differently depending on the plant organ and on the type of interaction, strengthening the need to consider regulatory networks, including different signaling molecules.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Enfermedades de las Plantas/genética , Simbiosis/genética , Northern Blotting , Análisis por Conglomerados , Colletotrichum/crecimiento & desarrollo , Medicago truncatula/efectos de los fármacos , Medicago truncatula/microbiología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Nitrosoglutatión/farmacología , Sinorhizobium meliloti/crecimiento & desarrollo
19.
J Bacteriol ; 189(23): 8741-5, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17921312

RESUMEN

The symbiotic interaction between Medicago sativa and Sinorhizobium meliloti RmkatB(++) overexpressing the housekeeping catalase katB is delayed, and this delay is combined with an enlargement of infection threads. This result provides evidence that H(2)O(2) is required for optimal progression of infection threads through the root hairs and plant cell layers.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Medicago sativa/microbiología , Sinorhizobium meliloti/metabolismo , Simbiosis/fisiología , Catalasa/genética , Catalasa/metabolismo , Expresión Génica , Medicago sativa/metabolismo , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/genética
20.
Mol Plant Microbe Interact ; 19(9): 970-5, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16941901

RESUMEN

Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.


Asunto(s)
Medicago truncatula/metabolismo , Óxido Nítrico/biosíntesis , Raíces de Plantas/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis/fisiología , Inhibidores Enzimáticos/farmacología , Fluoresceína/química , Regulación Bacteriana de la Expresión Génica/genética , Medicago truncatula/microbiología , Microscopía Confocal , Mutación/genética , Óxido Nítrico/química , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Raíces de Plantas/microbiología , Sinorhizobium meliloti/genética , omega-N-Metilarginina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA