Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37345489

RESUMEN

One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.


Asunto(s)
Presenilinas , Erizos de Mar , Humanos , Animales , Presenilinas/genética , Hibridación in Situ , Expresión Génica , Erizos de Mar/genética , Regulación del Desarrollo de la Expresión Génica
2.
RNA ; 29(10): 1481-1499, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369528

RESUMEN

Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.


Asunto(s)
Bacillus subtilis , ARN Bacteriano , ARN Bacteriano/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN no Traducido/metabolismo , Ribonucleasa Pancreática/metabolismo , Estabilidad del ARN/genética
3.
Nucleic Acids Res ; 49(8): 4643-4654, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788929

RESUMEN

RNase Y and RNase E are disparate endoribonucleases that govern global mRNA turnover/processing in the two evolutionary distant bacteria Bacillus subtilis and Escherichia coli, respectively. The two enzymes share a similar in vitro cleavage specificity and subcellular localization. To evaluate the potential equivalence in biological function between the two enzymes in vivo we analyzed whether and to what extent RNase E is able to replace RNase Y in B. subtilis. Full-length RNase E almost completely restores wild type growth of the rny mutant. This is matched by a surprising reversal of transcript profiles both of individual genes and on a genome-wide scale. The single most important parameter to efficient complementation is the requirement for RNase E to localize to the inner membrane while truncation of the C-terminal sequences corresponding to the degradosome scaffold has only a minor effect. We also compared the in vitro cleavage activity for the major decay initiating ribonucleases Y, E and J and show that no conclusions can be drawn with respect to their activity in vivo. Our data confirm the notion that RNase Y and RNase E have evolved through convergent evolution towards a low specificity endonuclease activity universally important in bacteria.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Escherichia coli/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Regulación hacia Abajo , Endorribonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Perfilación de la Expresión Génica , Técnicas In Vitro , Microscopía Fluorescente , Ribonucleasas/genética , Ribonucleasas/metabolismo , Regulación hacia Arriba
4.
Biophys J ; 115(11): 2102-2113, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30447990

RESUMEN

Although RNase Y acts as the key enzyme initiating messenger RNA decay in Bacillus subtilis and likely in many other Gram-positive bacteria, its three-dimensional structure remains unknown. An antibody belonging to the rare immunoglobulin G (IgG) 2b λx isotype was raised against a 12-residue conserved peptide from the N-terminal noncatalytic domain of B. subtilis RNase Y (BsRNaseY) that is predicted to be intrinsically disordered. Here, we show that this domain can be produced as a stand-alone protein called Nter-BsRNaseY that undergoes conformational changes between monomeric and dimeric forms. Circular dichroism and size exclusion chromatography coupled with multiangle light scattering or with small angle x-ray scattering indicate that the Nter-BsRNaseY dimer displays an elongated form and a high content of α-helices, in agreement with the existence of a central coiled-coil structure appended with flexible ends, and that the monomeric state of Nter-BsRNaseY is favored upon binding the fragment antigen binding (Fab) of the antibody. The dissociation constants of the IgG/BsRNaseY, IgG/Nter-BsRNaseY, and IgG/peptide complexes indicate that the affinity of the IgG for Nter-BsRNaseY is in the nM range and suggest that the peptide is less accessible in BsRNaseY than in Nter-BsRNaseY. The crystal structure of the Fab in complex with the peptide antigen shows that the peptide adopts an elongated U-shaped conformation in which the unique hydrophobic residue of the peptide, Leu6, is completely buried. The peptide/Fab complex may mimic the interaction of a microdomain of the N-terminal domain of BsRNaseY with one of its cellular partners within the degradosome complex. Altogether, our results suggest that BsRNaseY may become accessible for protein interaction upon dissociation of its N-terminal domain into the monomeric form.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Bacillus subtilis/enzimología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Fragmentos de Péptidos/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/química , Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Fragmentos de Péptidos/química , Conformación Proteica , Dominios Proteicos , Estabilidad del ARN , Ribonucleasas/química , Homología de Secuencia
5.
Plant Mol Biol ; 96(6): 641-653, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29600502

RESUMEN

KEY MESSAGE: Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5' exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation. RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5' end maturation is thought to be achieved by the combined action of a 5' exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5' exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5' exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5' exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Cloroplastos/enzimología , Exorribonucleasas/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN del Cloroplasto/genética , ARN del Cloroplasto/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Homología de Secuencia de Aminoácido
6.
Cell Mol Life Sci ; 71(10): 1799-828, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24064983

RESUMEN

The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.


Asunto(s)
Bacterias/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Dominio Catalítico , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/genética , Ribonucleasas/metabolismo
7.
J Bacteriol ; 196(2): 318-24, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24187087

RESUMEN

In Bacillus subtilis, the dual activity 5' exo- and endoribonucleases J1 and J2 are important players in mRNA and stable RNA maturation and degradation. Recent work has improved our understanding of their structure and mechanism of action and identified numerous RNA substrates. However, almost nothing is known about the expression of these enzymes. Here, we have identified the transcriptional and translational signals that control the expression of the rnjA (RNase J1) and rnjB (RNase J2) genes. While the rnjB gene is transcribed constitutively from a sigma A promoter, optimal expression of RNase J1 requires cotranscription and cotranslation with the upstream ykzG gene, encoding a protein of unknown function. In the absence of coupled translation, RNase J1 expression is decreased more than 5-fold. Transcription of the ykzG operon initiates at a sigma A promoter with a noncanonical -35 box that is required for optimal transcription. Biosynthesis of RNase J1 is autocontrolled within a small range (1.4-fold) and also slightly stimulated (1.4-fold) in the absence of RNase J2. These controls are weak but might be useful to maintain the overall RNase J level and possibly also equimolar amounts of the two nucleases in the cell that primarily act as a heterodimer in vivo.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Ribonucleasas/biosíntesis , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Multimerización de Proteína , Transcripción Genética
8.
EMBO J ; 28(22): 3523-33, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19779461

RESUMEN

In contrast to Escherichia coli, initiation of mRNA decay in Gram-positive organisms is poorly understood. We studied the fate of the highly structured RNAs generated by premature transcription termination of S-adenosylmethionine (SAM)-dependent riboswitches in Bacillus subtilis. An essential protein of earlier unknown function, YmdA, was identified as a novel endoribonuclease (now called RNase Y) that was capable of preferential cleaving in vitro of the 5' monophosphorylated yitJ riboswitch upstream of the SAM-binding aptamer domain. Antiterminated full-length yitJ mRNA was not a substrate for RNase Y in vivo and in vitro, transcripts capable of forming the antiterminator were only cleaved in the presence of SAM. Turnover of 10 other SAM-dependent riboswitches was also initiated by RNase Y. Depletion of this ribonuclease increased the half-life of bulk mRNA more than two-fold. This indicates that RNase Y might be not only important for riboswitch RNA turnover but also as a key player in the initiation of mRNA decay in B. subtilis. About 40% of the sequenced eubacterial species have an RNase Y orthologue.


Asunto(s)
Bacillus subtilis/enzimología , Endorribonucleasas/fisiología , Estabilidad del ARN/genética , ARN Bacteriano/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Secuencia de Bases , Endorribonucleasas/química , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/fisiología , Modelos Biológicos , Familia de Multigenes/genética , Conformación de Ácido Nucleico , Organismos Modificados Genéticamente , Fosforilación , Estructura Terciaria de Proteína , ARN Bacteriano/química
9.
Microorganisms ; 11(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37374876

RESUMEN

The instability of messenger RNA is crucial to the control of gene expression. In Bacillus subtilis, RNase Y is the major decay-initiating endoribonuclease. Here, we show how this key enzyme regulates its own synthesis by modulating the longevity of its mRNA. Autoregulation is achieved through cleavages in two regions of the rny (RNase Y) transcript: (i) within the first ~100 nucleotides of the open reading frame, immediately inactivating the mRNA for further rounds of translation; (ii) cleavages in the rny 5' UTR, primarily within the 5'-terminal 50 nucleotides, creating entry sites for the 5' exonuclease J1 whose progression is blocked around position -15 of the rny mRNA, potentially by initiating ribosomes. This links the functional inactivation of the transcript by RNase J1 to translation efficiency, depending on the ribosome occupancy at the translation initiation site. By these mechanisms, RNase Y can initiate degradation of its own mRNA when the enzyme is not occupied with degradation of other RNAs and thus prevent its overexpression beyond the needs of RNA metabolism.

10.
Mol Microbiol ; 81(6): 1526-41, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21843271

RESUMEN

RNase Y is a novel endoribonuclease affecting global mRNA metabolism. We show that this nuclease affects the expression of the Bacillus subtilis infC-rpmI-rplT operon, encoding translation initiation factor IF3 and the ribosomal proteins L35 and L20. This operon is autoregulated by a complex L20-dependent transcription attenuation mechanism. L20 binds to a phylogenetically conserved domain on the 5' untranslated region of the infC mRNA which mimics the L20 binding sites on 23S rRNA. We have identified a second promoter (P1) upstream of the previously identified promoter (P2). The P1, but not the P2, readthrough transcript is stabilized in a strain depleted for RNase Y. However, under these conditions infC biosynthesis is repressed threefold. We show that the unprocessed P1 transcript is non-functional for IF3 translation but fully competent to express the co-transcribed ribosomal protein genes. RNase Y cleavage of the P1 transcript creates an entry site for the 5'-3' exonucleolytic activity of RNase J1 which degrades the infC mRNA when translation initiation efficiency is low. A second RNase Y cleavage is crucial for initiating degradation of the prematurely terminated infC leader RNAs, including the L20 operator complex, which permits efficient recycling of the L20 protein.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/fisiología , Regulación Bacteriana de la Expresión Génica , Factor 3 Procariótico de Iniciación/biosíntesis , Biosíntesis de Proteínas , Ribonucleasas/metabolismo , Proteínas Ribosómicas/biosíntesis , Bacillus subtilis/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Modelos Biológicos , Datos de Secuencia Molecular , Estabilidad del ARN
11.
Mol Microbiol ; 82(5): 1260-76, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22014150

RESUMEN

The presence of very different sets of enzymes, and in particular the presence of RNase E and RNase J, has been used to explain significant differences in RNA metabolism between the two model organisms Escherichia coli and Bacillus subtilis. However, these studies might have somewhat polarized our view of RNA metabolism. Here, we identified a RNase J in Mycobacterium smegmatis that has both 5'-3' exo- and endonucleolytic activity. This enzyme coexists with RNase E in this organism, a configuration that enabled us to study how these two key nucleases collaborate. We demonstrate that RNase E is responsible for the processing of the furA-katG transcript in M. smegmatis and that both RNase E and RNase J are involved in the 5' end processing of all ribosomal RNAs. In contrast to B. subtilis, the activity of RNase J, although required in vivo for 23S rRNA maturation, is not essential in M. smegmatis. We show that the pathways for ribosomal RNA maturation in M. smegmatis are quite different from those observed in E. coli and in B. subtilis. Studying organisms containing different combinations of key ribonucleases can thus significantly broaden our view of the possible strategies that exist to direct RNA metabolism.


Asunto(s)
Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Ribonucleasas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Biológicos , Modelos Químicos , Modelos Moleculares
12.
Mol Microbiol ; 75(2): 489-98, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20025672

RESUMEN

Ribonucleases J1 and J2 are recently discovered enzymes with dual 5'-to-3' exoribonucleolytic/endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5'-to-3' exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.


Asunto(s)
Bacillus subtilis/enzimología , Ribonucleasas/metabolismo , Bacillus subtilis/genética , Secuencia de Bases , Duplicación de Gen , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Cinética , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Hibridación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Ribonucleasas/genética , Especificidad por Sustrato
13.
Microbiology (Reading) ; 157(Pt 4): 977-987, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21233158

RESUMEN

Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ-ProA-ProH route is responsible for the production of proline as an osmoprotectant, and the ProB-ProA-ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB-treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Prolina/metabolismo , Riboswitch , Northern Blotting , Conformación de Ácido Nucleico , Fenilalanina/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Recombinación Genética , Regiones Terminadoras Genéticas , Transcripción Genética
14.
Microbiology (Reading) ; 157(Pt 9): 2456-2469, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21602220

RESUMEN

The non-domesticated Bacillus subtilis strain 3610 displays, over a wide range of humidity, hyper-branched, dendritic, swarming-like migration on a minimal agar medium. At high (70 %) humidity, the laboratory strain 168 sfp+ (producing surfactin) behaves very similarly, although this strain carries a frameshift mutation in swrA, which another group has shown under their conditions (which include low humidity) is essential for swarming. We reconcile these different results by demonstrating that, while swrA is essential for dendritic migration at low humidity (30-40 %), it is dispensable at high humidity. Dendritic migration (flagella- and surfactin-dependent) of strains 168 sfp+ swrA and 3610 involves elongation of dendrites for several hours as a monolayer of cells in a thin fluid film. This enabled us to determine in situ the spatiotemporal pattern of expression of some key players in migration as dendrites develop, using gfp transcriptional fusions for hag (encoding flagellin), comA (regulation of surfactin synthesis) as well as eps (exopolysaccharide synthesis). Quantitative (single-cell) analysis of hag expression in situ revealed three spatially separated subpopulations or cell types: (i) networks of chains arising early in the mother colony (MC), expressing eps but not hag; (ii) largely immobile cells in dendrite stems expressing intermediate levels of hag; and (iii) a subpopulation of cells with several distinctive features, including very low comA expression but hyper-expression of hag (and flagella). These specialized cells emerge from the MC to spearhead the terminal 1 mm of dendrite tips as swirling and streaming packs, a major characteristic of swarming migration. We discuss a model for this swarming process, emphasizing the importance of population density and of the complementary roles of packs of swarmers driving dendrite extension, while non-mobile cells in the stems extend dendrites by multiplication.


Asunto(s)
Bacillus subtilis/fisiología , Flagelina/metabolismo , Bacillus subtilis/clasificación , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biota , Flagelina/genética , Regulación Bacteriana de la Expresión Génica , Humedad , Análisis de la Célula Individual
15.
Nucleic Acids Res ; 36(18): 5955-69, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18812398

RESUMEN

The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively. Several antisense RNAs were synthesized from the downstream S-box-dependent promoter, resulting in modulation of the level of ubiG transcript and of MccB activity. In contrast, the upstream T-box system did not appear to play a major role in regulation, leaving antisense transcription as the major regulatory mechanism for the ubiG operon. The abundance of sense and antisense transcripts was inversely correlated with the sulfur source availability. Deletion of the downstream promoter region completely abolished the sulfur-dependent control of the ubiG operon, and the expression of antisense transcripts in trans did not restore the regulation of the operon. Our data revealed important insights into the molecular mechanism of cis-antisense-mediated regulation, a control system only rarely observed in prokaryotes. We proposed a regulatory model in which the antisense RNA controlled the expression of the ubiG operon in cis via transcriptional interference at the ubiG locus.


Asunto(s)
Clostridium acetobutylicum/genética , Regulación Bacteriana de la Expresión Génica , Operón , ARN sin Sentido/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Azufre/metabolismo , Bacillus subtilis/genética , Secuencia de Bases , Clostridium acetobutylicum/enzimología , Cistationina betasintasa/biosíntesis , Cistationina betasintasa/genética , Cistationina gamma-Liasa/biosíntesis , Cistationina gamma-Liasa/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , ARN sin Sentido/análisis , ARN sin Sentido/química , ARN Mensajero/metabolismo
16.
Front Microbiol ; 11: 1055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582060

RESUMEN

mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria Escherichia coli and Bacillus subtilis, RNA decay has not been studied in detail in cyanobacteria. Synechocystis sp. PCC6803 encodes orthologs of both E. coli and B. subtilis RNases, including RNase E and RNase J, respectively. We show that in vitro Sy RNases E and J have an endonucleolytic cleavage specificity that is very similar between them and also compared to orthologous enzymes from E. coli, B. subtilis, and Chlamydomonas. Moreover, Sy RNase J displays a robust 5'-exoribonuclease activity similar to B. subtilis RNase J1, but unlike the evolutionarily related RNase J in chloroplasts. Both nucleases are essential and gene deletions could not be fully segregated in Synechocystis. We generated partially disrupted strains of Sy RNase E and J that were stable enough to allow for their growth and characterization. A transcriptome analysis of these strains partially depleted for RNases E and J, respectively, allowed to observe effects on specific transcripts. RNase E altered the expression of a larger number of chromosomal genes and antisense RNAs compared to RNase J, which rather affects endogenous plasmid encoded transcripts. Our results provide the first description of the main transcriptomic changes induced by the partial depletion of two essential ribonucleases in cyanobacteria.

17.
mBio ; 11(1)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071272

RESUMEN

Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs.IMPORTANCE All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.


Asunto(s)
Bacillus subtilis/enzimología , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Estabilidad del ARN/fisiología , Ribonucleasas/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endorribonucleasas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Microscopía Fluorescente , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética
18.
Mol Microbiol ; 70(1): 183-96, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18713320

RESUMEN

Ribonucleases J1 and J2 of Bacillus subtilis are evolutionarily conserved enzymes combining an endoribonucleolytic and a 5'-3' exoribonucleolytic activity in a single polypeptide. Their endoribonucleolytic cleavage specificity resembles that of RNase E, a key player in the processing and degradation of RNA in Escherichia coli. The biological significance of the paralogous RNases J1 and J2 in Bacillus subtilis is still unknown. Based on the premise that cleavage of an mRNA might alter its stability and hence its abundance, we have analysed the transcriptomes and proteomes of single and double mutant strains. The absence or decrease of both RNases J1 and J2 together profoundly alters the expression level of hundreds of genes. By contrast, the effect on global gene expression is minimal in single mutant strains, suggesting that the two nucleases have largely overlapping substrate specificities. Half-life measurements of individual mRNAs show that RNases J1/J2 can alter gene expression by modulating transcript stability. The absence/decrease of RNases J1 and J2 results in similar numbers of transcripts whose abundance is either increased or decreased, suggesting a complex role of these ribonucleases in both degradative and regulatory processing events that have an important impact on gene expression.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribonucleasas/genética , Bacillus subtilis/enzimología , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos , Biosíntesis de Proteínas , Proteoma/genética , Estabilidad del ARN , Especificidad por Sustrato
19.
Nucleic Acids Res ; 35(5): 1578-88, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17289755

RESUMEN

In contrast to Escherichia coli no molecular mechanism controlling the biosynthesis of ribosomal proteins has been elucidated in Gram-positive organisms. Here we show that the expression of the Bacillus subtilis infC-rpmI-rplT operon encoding translation factor IF3 and the ribosomal proteins L35 and L20 is autoregulated by a complex transcription attenuation mechanism. It implicates a 200-bp leader region upstream of infC which contains two conserved regulatory elements, one of which can act as a transcription terminator. Using in vitro and in vivo approaches we show that expression of the operon is regulated at the level of transcription elongation by a change in the structure of the leader mRNA which depends upon the presence of ribosomal protein L20. L20 binds to a phylogenetically conserved domain and provokes premature transcription termination at the leader terminator. Footprint and toeprint experiments support a regulatory model involving molecular mimicry between the L20-binding sites on 23S rRNA and the mRNA. Our data suggest that Nomura's model of ribosomal protein biosynthesis based on autogenous control and molecular mimicry is also valid in Gram-positive organisms.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Regiones Terminadoras Genéticas , Transcripción Genética , Regiones no Traducidas 5'/química , Bacillus subtilis/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Modelos Genéticos , Imitación Molecular , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , ARN Mensajero/química , ARN Ribosómico/química , Elementos Reguladores de la Transcripción
20.
Methods Enzymol ; 612: 343-359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30502948

RESUMEN

The metabolic instability of mRNA is fundamental to the adaptation of gene expression. In bacteria, mRNA decay follows first-order kinetics and is primarily controlled at the steps initiating degradation. In the model Gram-positive organism Bacillus subtilis, the major mRNA decay pathway initiates with an endonucleolytic cleavage by the membrane-associated RNase Y. High-throughput sequencing has identified a large number of potential mRNA substrates but our understanding of what parameters affect cleavage in vivo is still quite limited. In vitro reconstitution of the cleavage event is thus instrumental in defining the mechanistic details, substrate recognition, the role of auxiliary factors, and of membrane localization in cleavage. In this chapter, we describe not only the purification and assay of RNase Y but also RNase J1/J2 which shares a similar low-specificity endoribonucleolytic activity with RNase Y. We highlight potential problems in the set-up of these assays and include methods that allow purification of full-length RNase Y and its incorporation in multilamellar vesicles created from native B. subtilis lipids that might best mimic in vivo conditions.


Asunto(s)
Bacillus subtilis/enzimología , Endorribonucleasas/metabolismo , Bacillus subtilis/genética , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Cinética , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA