Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 49(4): 709-724.e8, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30291028

RESUMEN

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.


Asunto(s)
Basófilos/inmunología , Galectinas/inmunología , Receptores de Hialuranos/inmunología , Inmunoglobulina D/inmunología , Células Th2/inmunología , Animales , Basófilos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Galectinas/genética , Galectinas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Inmunoglobulina D/metabolismo , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Interleucina-4/metabolismo , Ratones Endogámicos BALB C , Unión Proteica , Células Th2/metabolismo
2.
Immunity ; 47(1): 118-134.e8, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28709802

RESUMEN

Secretory immunoglobulin A (SIgA) enhances host-microbiota symbiosis, whereas SIgM remains poorly understood. We found that gut IgM+ plasma cells (PCs) were more abundant in humans than mice and clonally related to a large repertoire of memory IgM+ B cells disseminated throughout the intestine but rare in systemic lymphoid organs. In addition to sharing a gut-specific gene signature with memory IgA+ B cells, memory IgM+ B cells were related to some IgA+ clonotypes and switched to IgA in response to T cell-independent or T cell-dependent signals. These signals induced abundant IgM which, together with SIgM from clonally affiliated PCs, recognized mucus-embedded commensals. Bacteria recognized by human SIgM were dually coated by SIgA and showed increased richness and diversity compared to IgA-only-coated or uncoated bacteria. Thus, SIgM may emerge from pre-existing memory rather than newly activated naive IgM+ B cells and could help SIgA to anchor highly diverse commensal communities to mucus.


Asunto(s)
Angiodisplasia/inmunología , Linfocitos B/inmunología , Neoplasias del Colon/inmunología , Pólipos del Colon/inmunología , Inmunoglobulina M/metabolismo , Intestinos/inmunología , Células Plasmáticas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Clonales , Femenino , Microbioma Gastrointestinal/inmunología , Humanos , Inmunidad Mucosa , Inmunoglobulina A/metabolismo , Cambio de Clase de Inmunoglobulina , Memoria Inmunológica , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Simbiosis
3.
Am J Hum Genet ; 109(8): 1458-1471, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809576

RESUMEN

Although the evolutionary history of the X chromosome indicates its specialization in male fitness, its role in spermatogenesis has largely been unexplored. Currently only three X chromosome genes are considered of moderate-definitive diagnostic value. We aimed to provide a comprehensive analysis of all X chromosome-linked protein-coding genes in 2,354 azoospermic/cryptozoospermic men from four independent cohorts. Genomic data were analyzed and compared with data in normozoospermic control individuals and gnomAD. While updating the clinical significance of known genes, we propose 21 recurrently mutated genes strongly associated with and 34 moderately associated with azoospermia/cryptozoospermia not previously linked to male infertility (novel). The most frequently affected prioritized gene, RBBP7, was found mutated in ten men across all cohorts, and our functional studies in Drosophila support its role in germ stem cell maintenance. Collectively, our study represents a significant step towards the definition of the missing genetic etiology in idiopathic severe spermatogenic failure and significantly reduces the knowledge gap of X-linked genetic causes of azoospermia/cryptozoospermia contributing to the development of future diagnostic gene panels.


Asunto(s)
Azoospermia , Infertilidad Masculina , Oligospermia , Azoospermia/genética , Humanos , Infertilidad Masculina/genética , Masculino , Espermatogénesis/genética , Cromosoma X
4.
Nephrol Dial Transplant ; 39(9): 1442-1448, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38317457

RESUMEN

BACKGROUND: Clinical variability among individuals with heterozygous pathogenic/likely pathogenic (P/LP) variants in the COL4A3/COL4A4 genes (also called autosomal dominant Alport syndrome or COL4A3/COL4A4-related disorder) is huge; many individuals are asymptomatic or show microhematuria, while others may develop proteinuria and chronic kidney disease (CKD). The prevalence of simple kidney cysts (KC) in the general population varies according to age, and patients with advanced CKD are prone to have them. A possible association between heterozygous COL4A3, COL4A4 and COL4A5 P/LP variants and KC has been described in small cohorts. The presence of KC in a multicenter cohort of individuals with heterozygous P/LP variants in the COL4A3/COL4A4 genes is assessed in this study. METHODS: We evaluated the presence of KC by ultrasound in 157 individuals with P/LP variants in COL4A3 (40.7%) or COL4A4 (53.5%) without kidney replacement therapy. The association between presence of KC and age, proteinuria, estimated glomerular filtration rate (eGFR) and causative gene was analyzed. Prevalence of KC was compared with historical case series in the general population. RESULTS: Half of the individuals with P/LP variants in COL4A3/COL4A4 showed KC, which is a significantly higher percentage than in the general population. Only 3.8% (6/157) had cystic nephromegaly. Age and eGFR showed an association with the presence of KC (P < .001). No association was found between KC and proteinuria, sex or causative gene. CONCLUSIONS: Individuals with COL4A3/COL4A4 P/LP variants are prone to develop KC more frequently than the general population, and their presence is related to age and to eGFR. Neither proteinuria, sex nor the causative gene influences the presence of KC in these individuals.


Asunto(s)
Autoantígenos , Colágeno Tipo IV , Heterocigoto , Enfermedades Renales Quísticas , Humanos , Colágeno Tipo IV/genética , Femenino , Masculino , Prevalencia , Adulto , Persona de Mediana Edad , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/epidemiología , Autoantígenos/genética , Nefritis Hereditaria/genética , Nefritis Hereditaria/epidemiología , Tasa de Filtración Glomerular , Adulto Joven , Anciano , Mutación , Quistes/genética , Quistes/epidemiología , Pronóstico , Adolescente
5.
Nephrol Dial Transplant ; 37(10): 1906-1915, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34610128

RESUMEN

BACKGROUND: Proteinuria is a well-known risk factor for progressive kidney impairment. Recently, C-terminal cubilin (CUBN) variants have been associated with isolated proteinuria without progression of kidney disease. METHODS: Genetic testing of 347 families with proteinuria of suspected monogenic cause was performed by next-generation sequencing of a custom-designed kidney disease gene panel. Families with CUBN biallelic proteinuria-causing variants were studied at the clinical, genetic, laboratory and pathologic levels. RESULTS: Twelve families (15 patients) bearing homozygous or compound heterozygous proteinuria-causing variants in the C-terminal CUBN gene were identified, representing 3.5% of the total cohort. We identified 14 different sequence variants, five of which were novel. The median age at diagnosis of proteinuria was 4 years (range 9 months to 44 years), and in most cases proteinuria was detected incidentally. Thirteen patients had moderate to severe proteinuria at diagnosis without nephrotic syndrome. These patients showed lack of response to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, normal kidney biopsy and preservation of normal kidney function over time. The two remaining patients presented a more severe phenotype, likely caused by associated comorbidities. CONCLUSIONS: Identification of C-terminal pathogenic CUBN variants is diagnostic of an entity characterized by glomerular proteinuria, normal kidney histology and lack of response to ACEi/ARB treatment. This study adds evidence and increases awareness about albuminuria caused by C-terminal variants in the CUBN gene, which is a benign condition usually diagnosed in childhood with preserved renal function until adulthood.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Humanos , Proteinuria/patología , Receptores de Superficie Celular/genética
6.
Nephrol Dial Transplant ; 37(4): 687-696, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33532864

RESUMEN

BACKGROUND: Inherited kidney diseases are one of the leading causes of chronic kidney disease (CKD) that manifests before the age of 30 years. Precise clinical diagnosis of early-onset CKD is complicated due to the high phenotypic overlap, but genetic testing is a powerful diagnostic tool. We aimed to develop a genetic testing strategy to maximize the diagnostic yield for patients presenting with early-onset CKD and to determine the prevalence of the main causative genes. METHODS: We performed genetic testing of 460 patients with early-onset CKD of suspected monogenic cause using next-generation sequencing of a custom-designed kidney disease gene panel in addition to targeted screening for c.428dupC MUC1. RESULTS: We achieved a global diagnostic yield of 65% (300/460), which varied depending on the clinical diagnostic group: 77% in cystic kidney diseases, 76% in tubulopathies, 67% in autosomal dominant tubulointerstitial kidney disease, 61% in glomerulopathies and 38% in congenital anomalies of the kidney and urinary tract. Among the 300 genetically diagnosed patients, the clinical diagnosis was confirmed in 77%, a specific diagnosis within a clinical diagnostic group was identified in 15%, and 7% of cases were reclassified. Of the 64 causative genes identified in our cohort, 7 (COL4A3, COL4A4, COL4A5, HNF1B, PKD1, PKD2 and PKHD1) accounted for 66% (198/300) of the genetically diagnosed patients. CONCLUSIONS: Two-thirds of patients with early-onset CKD in this cohort had a genetic cause. Just seven genes were responsible for the majority of diagnoses. Establishing a genetic diagnosis is crucial to define the precise aetiology of CKD, which allows accurate genetic counselling and improved patient management.


Asunto(s)
Enfermedades Renales Poliquísticas , Insuficiencia Renal Crónica , Adulto , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón , Masculino , Mutación , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
7.
Am J Kidney Dis ; 78(4): 560-570.e1, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33838161

RESUMEN

RATIONALE & OBJECTIVE: Alport syndrome is a common genetic kidney disease accounting for approximately 2% of patients receiving kidney replacement therapy (KRT). It is caused by pathogenic variants in the gene COL4A3, COL4A4, or COL4A5. The aim of this study was to evaluate the clinical and genetic spectrum of patients with autosomal dominant Alport syndrome (ADAS). STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: 82 families (252 patients) with ADAS were studied. Clinical, genetic, laboratory, and pathology data were collected. OBSERVATIONS: A pathogenic DNA variant in COL4A3 was identified in 107 patients (35 families), whereas 133 harbored a pathogenic variant in COL4A4 (43 families). Digenic/complex inheritance was observed in 12 patients. Overall, the median kidney survival was 67 (95% CI, 58-73) years, without significant differences across sex (P=0.8), causative genes (P=0.6), or type of variant (P=0.9). Microhematuria was the most common kidney manifestation (92.1%), and extrarenal features were rare. Findings on kidney biopsies ranged from normal to focal segmental glomerulosclerosis. The slope of estimated glomerular filtration rate change was-1.46 (-1.66 to-1.26) mL/min/1.73m2 per year for the overall group, with no significant differences between ADAS genes (P=0.2). LIMITATIONS: The relatively small size of this series from a single country, potentially limiting generalizability. CONCLUSIONS: Patients with ADAS have a wide spectrum of clinical presentations, ranging from asymptomatic to kidney failure, a pattern not clearly related to the causative gene or type of variant. The diversity of ADAS phenotypes contributes to its underdiagnosis in clinical practice.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Pruebas Genéticas/métodos , Variación Genética/genética , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nefritis Hereditaria/epidemiología , Insuficiencia Renal/diagnóstico , Insuficiencia Renal/epidemiología , Insuficiencia Renal/genética , Estudios Retrospectivos , Adulto Joven
8.
J Hum Genet ; 66(8): 795-803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33654185

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. FSGS is considered as a podocyte disease due to the fact that in the majority of patients with FSGS, the lesion results from defects in the podocyte structure. However, FSGS does not result exclusively from podocyte-associated genes. In this study, we used a genetic approach based on targeted next-generation sequencing (NGS) of 242 genes to identify the genetic cause of FSGS in seven Tunisian families. The sequencing results revealed the presence of eight distinct mutations including seven newly discovered ones: the c.538G>A (p.V180M) in NPHS2, c.5186G>A (p.R1729Q) in PLCE1 and c.232A>C (p.I78L) in PAX2 and five novel mutations in COL4A3 and COL4A4 genes. Four mutations (c.209G>A (p.G70D), c.725G>A (p.G242E), c.2225G>A (p.G742E), and c. 1681_1698del) were detected in COL4A3 gene and one mutation (c.1424G>A (p.G475D)) was found in COL4A4. In summary, NGS of a targeted gene panel is an ideal approach for the genetic testing of FSGS with multiple possible underlying etiologies. We have demonstrated that not only podocyte genes but also COL4A3/4 mutations should be considered in patients with FSGS.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Colágeno/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Factor de Transcripción PAX2/genética , Adulto , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación Missense , Linaje , Podocitos/fisiología , Túnez , Adulto Joven
9.
Genet Med ; 22(12): 1956-1966, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32741963

RESUMEN

PURPOSE: Azoospermia affects 1% of men and it can be the consequence of spermatogenic maturation arrest (MA). Although the etiology of MA is likely to be of genetic origin, only 13 genes have been reported as recurrent potential causes of MA. METHODS: Exome sequencing in 147 selected MA patients (discovery cohort and two validation cohorts). RESULTS: We found strong evidence for five novel genes likely responsible for MA (ADAD2, TERB1, SHOC1, MSH4, and RAD21L1), for which mouse knockout (KO) models are concordant with the human phenotype. Four of them were validated in the two independent MA cohorts. In addition, nine patients carried pathogenic variants in seven previously reported genes-TEX14, DMRT1, TEX11, SYCE1, MEIOB, MEI1, and STAG3-allowing to upgrade the clinical significance of these genes for diagnostic purposes. Our meiotic studies provide novel insight into the functional consequences of the variants, supporting their pathogenic role. CONCLUSION: Our findings contribute substantially to the development of a pre-testicular sperm extraction (TESE) prognostic gene panel. If properly validated, the genetic diagnosis of complete MA prior to surgical interventions is clinically relevant. Wider implications include the understanding of potential genetic links between nonobstructive azoospermia (NOA) and cancer predisposition, and between NOA and premature ovarian failure.


Asunto(s)
Azoospermia , Azoospermia/diagnóstico , Azoospermia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Disección , Exoma/genética , Humanos , Masculino , Testículo , Secuenciación del Exoma
10.
Nature ; 499(7459): 471-5, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23823723

RESUMEN

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Asunto(s)
Variación Genética , Hominidae/genética , África , Animales , Animales Salvajes/genética , Animales de Zoológico/genética , Asia Sudoriental , Evolución Molecular , Flujo Génico/genética , Genética de Población , Genoma/genética , Gorilla gorilla/clasificación , Gorilla gorilla/genética , Hominidae/clasificación , Humanos , Endogamia , Pan paniscus/clasificación , Pan paniscus/genética , Pan troglodytes/clasificación , Pan troglodytes/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Densidad de Población
11.
BMC Nephrol ; 20(1): 126, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975089

RESUMEN

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is a rare autosomal recessive disorder characterized by early-onset nephrotic syndrome and microcephaly with brain anomalies. WDR73 pathogenic variants were described as the first genetic cause of GAMOS and, very recently, four novel causative genes, OSGEP, LAGE3, TP53RK, and TPRKB, have been identified. CASE PRESENTATION: We present the clinical and genetic characteristics of two unrelated infants with clinical suspicion of GAMOS who were born from consanguineous parents. Both patients showed a similar clinical presentation, with early-onset nephrotic syndrome, microcephaly, brain atrophy, developmental delay, axial hypotonia, and early fatality. We identified two novel likely disease-causing variants in the OSGEP gene. These two cases, in conjunction with the findings of a literature review, indicate that OSGEP pathogenic variants are associated with an earlier onset of nephrotic syndrome and shorter life expectancy than WDR73 pathogenic variants. CONCLUSIONS: Our findings expand the spectrum of pathogenic variants in the OSGEP gene and, taken in conjunction with the results of the literature review, suggest that the OSGEP gene should be considered the main known monogenic cause of GAMOS. Early genetic diagnosis of GAMOS is of paramount importance for genetic counseling and family planning.


Asunto(s)
Hernia Hiatal , Riñón/patología , Metaloendopeptidasas/genética , Microcefalia , Nefrosis , Síndrome Nefrótico , Atrofia , Biopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Deterioro Clínico , Resultado Fatal , Femenino , Predisposición Genética a la Enfermedad , Hernia Hiatal/complicaciones , Hernia Hiatal/diagnóstico , Hernia Hiatal/genética , Hernia Hiatal/mortalidad , Homocigoto , Humanos , Lactante , Esperanza de Vida , Masculino , Microcefalia/complicaciones , Microcefalia/diagnóstico , Microcefalia/etiología , Microcefalia/genética , Microcefalia/mortalidad , Nefrosis/complicaciones , Nefrosis/diagnóstico , Nefrosis/genética , Nefrosis/mortalidad , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/etiología , Síndrome Nefrótico/genética
12.
Mol Biol Evol ; 33(12): 3268-3283, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27795229

RESUMEN

Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.


Asunto(s)
Hominidae/genética , Selección Genética , Alelos , Animales , Evolución Biológica , Bases de Datos de Ácidos Nucleicos , Evolución Molecular , Estudios de Asociación Genética , Variación Genética , Humanos/genética , Metagenómica/métodos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos
13.
PLoS Genet ; 10(2): e1004128, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586184

RESUMEN

Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.


Asunto(s)
Acrodermatitis/genética , Proteínas de Transporte de Catión/genética , Genética de Población , Selección Genética/genética , Zinc/deficiencia , Acrodermatitis/patología , África del Sur del Sahara , Regulación de la Expresión Génica/genética , Frecuencia de los Genes , Células HeLa , Humanos , Mutación
14.
Bioinformatics ; 31(24): 3946-52, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26315912

RESUMEN

MOTIVATION: Detecting positive selection in genomic regions is a recurrent topic in natural population genetic studies. However, there is little consistency among the regions detected in several genome-wide scans using different tests and/or populations. Furthermore, few methods address the challenge of classifying selective events according to specific features such as age, intensity or state (completeness). RESULTS: We have developed a machine-learning classification framework that exploits the combined ability of some selection tests to uncover different polymorphism features expected under the hard sweep model, while controlling for population-specific demography. As a result, we achieve high sensitivity toward hard selective sweeps while adding insights about their completeness (whether a selected variant is fixed or not) and age of onset. Our method also determines the relevance of the individual methods implemented so far to detect positive selection under specific selective scenarios. We calibrated and applied the method to three reference human populations from The 1000 Genome Project to generate a genome-wide classification map of hard selective sweeps. This study improves detection of selective sweep by overcoming the classical selection versus no-selection classification strategy, and offers an explanation to the lack of consistency observed among selection tests when applied to real data. Very few signals were observed in the African population studied, while our method presents higher sensitivity in this population demography. AVAILABILITY AND IMPLEMENTATION: The genome-wide results for three human populations from The 1000 Genomes Project and an R-package implementing the 'Hierarchical Boosting' framework are available at http://hsb.upf.edu/.


Asunto(s)
Genética de Población/métodos , Genómica/métodos , Aprendizaje Automático , Demografía , Humanos , Polimorfismo Genético , Selección Genética
15.
Nucleic Acids Res ; 42(Database issue): D903-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24275494

RESUMEN

Searching for Darwinian selection in natural populations has been the focus of a multitude of studies over the last decades. Here we present the 1000 Genomes Selection Browser 1.0 (http://hsb.upf.edu) as a resource for signatures of recent natural selection in modern humans. We have implemented and applied a large number of neutrality tests as well as summary statistics informative for the action of selection such as Tajima's D, CLR, Fay and Wu's H, Fu and Li's F* and D*, XPEHH, ΔiHH, iHS, F(ST), ΔDAF and XPCLR among others to low coverage sequencing data from the 1000 genomes project (Phase 1; release April 2012). We have implemented a publicly available genome-wide browser to communicate the results from three different populations of West African, Northern European and East Asian ancestry (YRI, CEU, CHB). Information is provided in UCSC-style format to facilitate the integration with the rich UCSC browser tracks and an access page is provided with instructions and for convenient visualization. We believe that this expandable resource will facilitate the interpretation of signals of selection on different temporal, geographical and genomic scales.


Asunto(s)
Bases de Datos Genéticas , Genoma Humano , Selección Genética , Navegador Web , Interpretación Estadística de Datos , Genómica , Humanos , Internet
16.
Genes (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927615

RESUMEN

X-linked hypophosphatemia (XLH) is a rare inherited disorder of renal phosphate wasting with a highly variable phenotype caused by loss-of-function variants in the PHEX gene. The diagnosis of individuals with mild phenotypes can be challenging and often delayed. Here, we describe a three-generation family with a very mild clinical presentation of XLH. The diagnosis was unexpectedly found in a 39-year-old woman who was referred for genetic testing due to an unclear childhood diagnosis of a tubulopathy. Genetic testing performed by next-generation sequencing using a kidney disease gene panel identified a novel non-canonical splice site variant in the PHEX gene. Segregation analysis detected that the consultand's father, who presented with hypophosphatemia and decreased tubular phosphate reabsorption, and the consultand's son also carried this variant. RNA studies demonstrated that the non-canonical splice site variant partially altered the splicing of the PHEX gene, as both wild-type and aberrant splicing transcripts were detected in the two male members with only one copy of the PHEX gene. In conclusion, this case contributes to the understanding of the relationship between splicing variants and the variable expressivity of XLH disease. The mild phenotype of this family can be explained by the coexistence of PHEX transcripts with aberrant and wild-type splicing.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Endopeptidasa Neutra Reguladora de Fosfato PHEX , Linaje , Sitios de Empalme de ARN , Humanos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Adulto , Femenino , Raquitismo Hipofosfatémico Familiar/genética , Masculino , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Fenotipo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación
17.
BMC Genomics ; 14 Suppl 1: S10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23369091

RESUMEN

BACKGROUND: Reconstructability of population history, from genetic information of extant individuals, is studied under a simulation setting. We do not address the issue of accuracy of the reconstruction algorithms: we assume the availability of the theoretical best algorithm. On the other hand, we focus on the fraction (1 - f) of the common genetic history that is irreconstructible or impenetrable. Thus the fraction, f, gives an upper bound on the extent of estimability. In other words, there exists no method that can reconstruct a fraction larger than f of the entire common genetic history. For the realization of such a study, we first define a natural measure of the amount of genetic history. Next, we use a population simulator (from literature) that has at least two features. Firstly, it has the capability of providing samples from different demographies, to effectively reflect reality. Secondly, it also provides the underlying relevant genetic history, captured in its entirety, where such a measure is applicable. Finally, to compute f, we use an information content measure of the relevant genetic history. The simulator of choice provided the following demographies: Africans, Europeans, Asians and Afro-Americans. RESULTS: We observe that higher the rate of recombination, lower the value of f, while f is invariant over varying mutation rates, in each of the demographies. The value of f increases with the number of samples, reaching a plateau and suggesting that in all the demographies at least about one-third of the relevant genetic history is impenetrable. The most surprising observation is that the the sum of the reconstructible history of the subsegments is indeed larger than the reconstructible history of the whole segment. In particular, longer the chromosomal segment, smaller the value of f, in all the demographies. CONCLUSIONS: We present the very first framework for measuring the fraction of the relevant genetic history of a population that is mathematically elusive. Our observed results on the tested demographies suggest that it may be better to aggregate the analysis of smaller chunks of chromosomal segments than fewer large chunks. Also, no matter the richness of samples in a population, at least one-third of the population genetic history is impenetrable. The framework also opens up possible new lines of investigation along the following. Given the characteristics of a population, possibly derived from observed extant individuals, to estimate the (1) optimal sample size and (2) optimal sequence length for the most informative analysis.


Asunto(s)
Genética de Población , Negro o Afroamericano/genética , Pueblo Asiatico/genética , Genoma Humano , Humanos , Tasa de Mutación , Recombinación Genética , Población Blanca/genética
18.
Mol Biol Evol ; 29(1): 25-30, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21890475

RESUMEN

The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.


Asunto(s)
Evolución Molecular , Densidad de Población , Grupos Raciales/genética , Grupos Raciales/historia , Recombinación Genética , África , Asia , Bases de Datos Genéticas , Europa (Continente) , Historia Antigua , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estadísticas no Paramétricas
19.
Hum Genet ; 131(4): 601-13, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22006219

RESUMEN

We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.


Asunto(s)
Variación Genética , Haplotipos/genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , África , Asia Central , Asia Sudoriental , Mapeo Cromosómico , Cromosomas Humanos X/genética , Europa (Continente) , Evolución Molecular , Asia Oriental , Femenino , Genética de Población/métodos , Genotipo , Geografía , Humanos , Masculino , Medio Oriente , Modelos Genéticos , Dinámica Poblacional , Reproducibilidad de los Resultados
20.
Bioinformatics ; 27(17): 2448-50, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21765095

RESUMEN

SUMMARY: Given a set of extant haplotypes IRiS first detects high confidence recombination events in their shared genealogy. Next using the local sequence topology defined by each detected event, it integrates these recombinations into an ancestral recombination graph. While the current system has been calibrated for human population data, it is easily extendible to other species as well. AVAILABILITY: IRiS (Identification of Recombinations in Sequences) binary files are available for non-commercial use in both Linux and Microsoft Windows, 32 and 64 bit environments from https://researcher.ibm.com/researcher/view_project.php?id = 2303 CONTACT: parida@us.ibm.com.


Asunto(s)
Genómica , Recombinación Genética , Programas Informáticos , Algoritmos , Genoma Humano , Haplotipos , Humanos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA