Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660921

RESUMEN

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

2.
Plant Physiol ; 192(4): 2838-2854, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37204807

RESUMEN

Somatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified 2 csi-miR171c-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression. Suppression of CsSCL2 expression by RNA interference (RNAi) enhanced SE in citrus callus. A thioredoxin superfamily protein CsClot was identified as an interactive protein of CsSCL2/3. Overexpression of CsClot disturbed reactive oxygen species (ROS) homeostasis in EC and enhanced SE. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq identified 660 genes directly suppressed by CsSCL2 that were enriched in biological processes including development-related processes, auxin signaling pathway, and cell wall organization. CsSCL2/3 bound to the promoters of regeneration-related genes, such as WUSCHEL-RELATED HOMEOBOX 2 (CsWOX2), CsWOX13, and Lateral Organ Boundaries Domain 40 (LBD40), and repressed their expression. Overall, CsSCL2/3 modulate ROS homeostasis through the interactive protein CsClot and directly suppress the expression of regeneration-related genes, thus regulating SE in citrus. We uncovered a regulatory pathway of miR171c-targeted CsSCL2/3 in SE, which shed light on the mechanism of SE and regeneration capability maintenance in citrus.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biotecnología , RNA-Seq , Regeneración , Técnicas de Embriogénesis Somática de Plantas , Regulación de la Expresión Génica de las Plantas
3.
Fish Physiol Biochem ; 50(3): 1141-1155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401031

RESUMEN

Autophagy is a cellular process that involves the fusion of autophagosomes and lysosomes to degrade damaged proteins or organelles. Triglycerides are hydrolyzed by autophagy, releasing fatty acids for energy through mitochondrial fatty acid oxidation (FAO). Inhibited mitochondrial FAO induces autophagy, establishing a crosstalk between lipid catabolism and autophagy. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, stimulates lipid catabolism genes, including fatty acid transport and mitochondrial FAO, while also inducing autophagy through transcriptional regulation of transcription factor EB (TFEB). Therefore, the study explores whether PPARα regulates autophagy through TFEB transcriptional control or mitochondrial FAO. In aquaculture, addressing liver lipid accumulation in fish is crucial. Investigating the link between lipid catabolism and autophagy is significant for devising lipid-lowering strategies and maintaining fish health. The present study investigated the impact of dietary fenofibrate and L-carnitine on autophagy by activating Pparα and enhancing FAO in Nile tilapia (Oreochromis niloticus), respectively. The dietary fenofibrate and L-carnitine reduced liver lipid content and enhanced ATP production, particularly fenofibrate. FAO enhancement by L-carnitine showed no changes in autophagic protein levels and autophagic flux. Moreover, fenofibrate-activated Pparα promoted the expression and nuclear translocation of Tfeb, upregulating autophagic initiation and lysosomal biogenesis genes. Pparα activation exhibited an increasing trend of LC3II protein at the basal autophagy and cumulative p62 protein trends after autophagy inhibition in zebrafish liver cells. These data show that Pparα activation-induced autophagic flux should be independent of lipid catabolism.


Asunto(s)
Autofagia , Fenofibrato , Metabolismo de los Lípidos , PPAR alfa , Animales , PPAR alfa/metabolismo , PPAR alfa/genética , Autofagia/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Fenofibrato/farmacología , Carnitina/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Cíclidos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ácidos Grasos/metabolismo
4.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393305

RESUMEN

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Asunto(s)
Cucurbita , Retroelementos , Productos Agrícolas , Fenotipo , Filogenia , Retroelementos/genética , Cucurbita/genética
5.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572553

RESUMEN

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas/farmacología , Colesterol , Hígado/metabolismo , Triglicéridos , Lipoproteínas VLDL , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Mamíferos/metabolismo
6.
Br J Nutr ; 130(4): 588-603, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-36408747

RESUMEN

Hormone-sensitive lipase (HSL) is one of the rate-determining enzymes in the hydrolysis of TAG, playing a crucial role in lipid metabolism. However, the role of HSL-mediated lipolysis in systemic nutrient homoeostasis has not been intensively understood. Therefore, we used CRISPR/Cas9 technique and Hsl inhibitor (HSL-IN-1) to establish hsla-deficient (hsla-/-) and Hsl-inhibited zebrafish models, respectively. As a result, the hsla-/- zebrafish showed retarded growth and reduced oxygen consumption rate, accompanied with higher mRNA expression of the genes related to inflammation and apoptosis in liver and muscle. Furthermore, hsla-/- and HSL-IN-1-treated zebrafish both exhibited severe fat deposition, whereas their expressions of the genes related to lipolysis and fatty acid oxidation were markedly reduced. The TLC results also showed that the dysfunction of Hsl changed the whole-body lipid profile, including increasing the content of TG and decreasing the proportion of phospholipids. In addition, the systemic metabolic pattern was remodelled in hsla-/- and HSL-IN-1-treated zebrafish. The dysfunction of Hsl lowered the glycogen content in liver and muscle and enhanced the utilisation of glucose plus the expressions of glucose transporter and glycolysis genes. Besides, the whole-body protein content had significantly decreased in the hsla-/- and HSL-IN-1-treated zebrafish, accompanied with the lower activation of the mTOR pathway and enhanced protein and amino acid catabolism. Taken together, Hsl plays an essential role in energy homoeostasis, and its dysfunction would cause the disturbance of lipid catabolism but enhanced breakdown of glycogen and protein for energy compensation.


Asunto(s)
Esterol Esterasa , Pez Cebra , Animales , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Pez Cebra/metabolismo , Lipasa/metabolismo , Lipólisis/genética , Metabolismo de los Lípidos/genética , Lípidos , Nutrientes
7.
Fish Shellfish Immunol ; 140: 108969, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37488039

RESUMEN

In omnivorous fish, the pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis is essential in the regulation of carbohydrate oxidative catabolism. Among the existing research, the role of the PDKs-PDHE1α axis in carnivorous fish with poor glucose utilization is unclear. In the present study, we determined the effects of PDK inhibition on the liver glycolipid metabolism of largemouth bass (Micropterus salmoides). DCA is a PDK-specific inhibitor that inhibits PDK by binding the allosteric sites. A total of 160 juvenile largemouth bass were randomly divided into two groups, with four replicates of 20 fish each, fed a control diet and a control diet supplemented with dichloroacetate (DCA) for 8 weeks. The present results showed that DCA supplementation significantly decreased the hepatosomatic index, triglycerides in liver and serum, and total liver lipids of largemouth bass compared with the control group. In addition, compared with the control group, DCA treatment significantly down-regulated gene expression associated with lipogenesis. Furthermore, DCA supplementation significantly decreased the mRNA expression of pdk3a and increased PDHE1α activity. In addition, DCA supplementation improved glucose oxidative catabolism and pyruvate oxidative phosphorylation (OXPHOS) in the liver, as evidenced by low pyruvate content in the liver and up-regulated expressions of glycolysis-related and TCA cycle/OXPHOS-related genes. Moreover, DCA consumption decreased hepatic malondialdehyde (MDA) content, enhanced the activities of superoxide dismutase (SOD), and increased transforming growth factor beta (tgf-ß), glutathione S-transferase (gst), and superoxide dismutase 1 (sod1) gene expression compared with the control diet. This study demonstrated that inhibition of PDKs by DCA promoted glucose utilization, reduced hepatic lipid deposition, and improved oxidative stress in largemouth bass by increasing pyruvate OXPHOS. Our findings contribute to the understanding of the underlying mechanism of the PDKs-PDHE1α axis in glucose metabolism and improve the utilization of dietary carbohydrates in farmed carnivorous fish.


Asunto(s)
Lubina , Glucosa , Animales , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacología , Fosforilación Oxidativa , Estrés Oxidativo , Hígado/metabolismo , Triglicéridos/metabolismo
8.
Lung ; 201(2): 225-234, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928143

RESUMEN

PURPOSE: Hyperoxia-induced apoptosis in alveolar epithelial type II cells (AECIIs) plays a critical role in the development of bronchopulmonary dysplasia (BPD). Melatonin has been shown to improve BPD. However, the protective effect of melatonin on hyperoxia-induced apoptosis in AECIIs and the precise mechanisms involved remain unclear. METHODS: Human alveolar epithelial type II A549 cells were treated with hyperoxia as an in vitro model to investigate the antiapoptotic mechanism of melatonin. CCK-8 assays were performed to investigate the viability of A549 cells. Hoechst 33,258 staining was carried out to quantify apoptosis in A549 cells. The protein expression levels of E26 oncogene homolog 1 (ETS1), Bcl-2, Bax, Bim, Wnt, ß-catenin, AKT and phosphorylated AKT were measured by western blotting. LY294002, SC79 and the downregulation of ETS1, melatonin receptor 1 (MT1) and MT2 with specific siRNAs were used to investigate the role of the PI3K/AKT pathway, ETS1, MT1 and MT2 in hyperoxia-induced apoptosis in A549 cells. RESULTS: Melatonin prevented hyperoxia-induced apoptosis in A549 cells, and the upregulation of E26 oncogene homolog 1 (ETS1) contributed to the antiapoptotic effect of melatonin. Melatonin activated the PI3K/AKT axis, which led to ETS1 upregulation and inhibited apoptosis in hyperoxia-exposed A549 cells. Furthermore, melatonin-induced activation of the PI3K/AKT axis, upregulation of ETS1 and inhibition of apoptosis were reversed by melatonin receptor 2 (MT2) siRNA in hyperoxia-exposed A549 cells. CONCLUSION: Melatonin prevents hyperoxia-induced apoptosis by activating the MT2/PI3K/AKT/ETS1 axis in alveolar epithelial cells.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Melatonina , Recién Nacido , Humanos , Células Epiteliales Alveolares , Hiperoxia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Receptores de Melatonina/metabolismo , Transducción de Señal , Apoptosis , Displasia Broncopulmonar/metabolismo , Células Epiteliales/metabolismo , Proteína Proto-Oncogénica c-ets-1
9.
BMC Microbiol ; 22(1): 155, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35689202

RESUMEN

BACKGROUND: Organic mulch is an important management practice in agricultural production to improve soil quality, control crop pests and diseases and increase the biodiversity of soil microecosystem. However, the information about soil microbial diversity and composition in litchi plantation response to organic mulch and its attribution to litchi downy blight severity was limited. This study aimed to investigate the effect of organic mulch on litchi downy blight, and evaluate the biodiversity and antimicrobial potential of soil microbial community of litchi plantation soils under organic mulch. RESULTS: Organic mulch could significantly suppress the disease incidence in the litchi plantation, and with a reduction of 37.74% to 85.66%. As a result of high-throughput 16S rRNA and ITS rDNA gene illumine sequencing, significantly higher bacterial and fungal community diversity indexes were found in organic mulch soils, the relative abundance of norank f norank o Vicinamibacterales, norank f Vicinamibacteraceae, norank f Xanthobacteraceae, Unclassified c sordariomycetes, Aspergillus and Thermomyces were significant more than that in control soils. Isolation and analysis of antagonistic microorganism showed that 29 antagonistic bacteria strains and 37 antagonistic fungi strains were unique for mulching soils. CONCLUSIONS: Thus, we believe that organic mulch has a positive regulatory effect on the litchi downy blight and the soil microbial communities, and so, is more suitable for litchi plantation.


Asunto(s)
Litchi , Micobioma , Bacterias , Litchi/genética , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
10.
Br J Nutr ; 127(5): 653-665, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33858522

RESUMEN

Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.


Asunto(s)
Bacillus amyloliquefaciens , Cíclidos , Acetatos , Alimentación Animal/análisis , Animales , Carbohidratos , Dieta/veterinaria , Fenotipo
11.
Fish Shellfish Immunol ; 124: 480-489, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35489590

RESUMEN

Inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is an immunomodulator to inhibit immune-mediated pro-inflammatory response and has been used to treat various immune-related diseases in mammals. However, the immunoregulatory effect of GABA in crustaceans has not been reported. This study evaluates the regulatory effect of dietary GABA supplementation on the innate immune status and immunoregulatory potential in lipopolysaccharide (LPS)-induced immune response in juvenile Eriocheir sinensis. Juvenile crabs were fed with six diets supplemented with graded GABA levels (0, 40, 80, 160, 320 and 640 mg/kg dry matter) for 8 weeks and then 24 h LPS challenge test was carried out. The results showed that dietary GABA supplementation significantly decreased mortality at 4 and 8 weeks. Moreover, the hemocyanin content, acid phosphatase, and alkaline phosphatase activities significantly increased in the crabs fed GABA supplementation compared with the control. On the contrary, the alanine aminotransferase and alanine aminotransferase activities in serum decreased significantly in the GABA supplementation groups compared with the control. Similarly, superoxide dismutase activity, glutathione content, and the transcriptional expression of the antioxidant-related genes and immune-related genes were significantly higher in the GABA supplementation groups than in the control. In addition, the mRNA expressions of anti-lipopolysaccharide factors (ALF 1, ALF 2, ALF 3) and inflammatory signaling pathways related genes (TLR, Myd88, Relish, LITAF, P38-MAPK, ADAM17) were significantly up-regulated in LPS stimulation groups compared with PBS treatment. Meanwhile, pro-apoptosis-related genes' mRNA expressions were significantly up-regulated, and anti-apoptosis-related genes were significantly down-regulated under LPS stimulation compared with PBS treatment. However, GABA pretreatment effectively alleviated LPS-induced immune overresponse and apoptosis. Therefore, this study demonstrates that dietary GABA supplementation could be used as an immunomodulator to improve the non-specific immunity and antioxidant capacity and alleviate the immune-mediated immune overresponse of juvenile E. sinensis.


Asunto(s)
Braquiuros , Lipopolisacáridos , Alanina Transaminasa , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Braquiuros/metabolismo , China , Dieta/veterinaria , Inmunidad Innata , Lipopolisacáridos/farmacología , Mamíferos/metabolismo , ARN Mensajero , Ácido gamma-Aminobutírico/farmacología
12.
Fish Shellfish Immunol ; 130: 550-559, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36179963

RESUMEN

High-carbohydrate diet could achieve cost-sparing effect in aquafeed, but it may cause adverse effects on the growth condition or health status of fish. In order to reduce the adverse effects caused by high carbohydrate diet, mannan oligosaccharides (MOS), a commonly used prebiotics, was used as the feed additive to feed juvenile Nile tilapia (Oreochromis niloticus) (1.19 ± 0.01g) for ten weeks. Three treatments including CON (35% carbohydrate diet), HC (45% carbohydrate diet) and HM (45% carbohydrate supplemented diet with 5 g/kg MOS) were involved. The results showed that MOS supplementation increased the weight gain and body length of juvenile Nile tilapia compared with the HC group. Addition of MOS decreased serum glucose and liver glycogen by increasing enzymes activity related to glycolysis. Furthermore, supplementation of MOS decreased the high carbohydrate diet induced triglycerides accumulation in liver by reducing the expression level of genes related to TG synthesis. Dietary MOS also down-regulated the gene expression level of inflammation factors in liver. Intestinal bacterial composition analyses showed that supplementation of MOS in high carbohydrate diet altered the gut microbial composition and enriched pathways related to the glucose metabolism based on KEGG analyses. In general, our results demonstrated that MOS supplementation in high carbohydrate diet could regulate glucose and lipid homeostasis which may be related to the alteration of gut microbiota. These findings shed light on the application of prebiotics to increase the growth performance, alleviate the metabolic disorders and regulate inflammatory response in aquaculture.


Asunto(s)
Cíclidos , Microbioma Gastrointestinal , Alimentación Animal/análisis , Animales , Cíclidos/genética , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glucosa/farmacología , Lípidos , Glucógeno Hepático/farmacología , Mananos/farmacología , Oligosacáridos/farmacología , Prebióticos/análisis , Triglicéridos
13.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843526

RESUMEN

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Asunto(s)
Bacillus amyloliquefaciens , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carbohidratos , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Inflamación/prevención & control , Inflamación/veterinaria , Hígado/metabolismo
14.
Plant Cell Rep ; 41(6): 1403-1415, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35381869

RESUMEN

KEY MESSAGE: Overexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding. However, SE capacity always declines in callus during subculture, which makes regeneration difficult and hinders the application of biotechnology. We previously found that miR171 may be a regulator of SE in citrus, based on the abundant expression of csi-miR171c in the embryogenic callus and during SE of citrus. Here, we report that miR171 promotes SE and is required for SE in citrus. Overexpression of miR171 restored SE competence in the recalcitrant callus of 'Guoqing No.1' Satsuma mandarin (G1), whereas inhibition of miR171 function by Short Tandem Target Mimic (STTM) weakened SE competence in the strongly embryogenic callus of 'Valencia' sweet orange (V). The comparative transcriptomic analysis in miR171 overexpressed callus line (OE) and the wild type callus (WT) indicated that overexpression of miR171 decreased the expression level of its SCARECROW-LIKE (CsSCL) targets, and activated stress response related biological processes and metabolic processes that are required for cell differentiation. However, CsSCLs were up-regulated in the OE callus during SE induction process, which activated the cell division and developmental processes that are required for embryogenesis progress. Our results validate the function of miR171 in regulation of SE and reveal the biological responses provoked by miR171 in citrus that may promote SE.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus sinensis/metabolismo , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento
15.
Zygote ; 30(5): 619-624, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35730539

RESUMEN

In vitro fertilization (IVF) has wide application in human infertility and animal breeding. It is also used for research on reproduction, fertility and development. However, IVF embryos are still inferior to their in vivo counterparts. Some substances in seminal plasma appear to have important roles in embryo development, and during the traditional IVF procedure, the seminal plasma is washed away. In this study, extracellular vesicles (EVs) were concentrated from seminal plasma by ultracentrifugation, visualized using transmission electron microscopy, and particle size distributions and concentrations were determined with a NanoSight particle analyzer. We found particles of various sizes in the seminal plasma, the majority having diameters ranging from 100 to 200 nm and concentrations of 6.07 × 1010 ± 2.91 × 109 particles/ml. Addition of seminal plasma EVs (SP-EVs) to the IVF medium with mouse oocytes and sperm significantly increased the rate of blastocyst formation and the inner cell mass (ICM)/trophectoderm (TE) cell ratio, and reduced the apoptosis of blastocysts. Our findings provide new insights into the role of seminal plasma EVs in mediating embryo development and it suggests that SP-EVs may be used to improve the developmental competence of IVF embryos, which has important significance for assisted reproduction in animals and humans.


Asunto(s)
Vesículas Extracelulares , Semen , Animales , Blastocisto , Desarrollo Embrionario , Fertilización In Vitro , Humanos , Masculino , Ratones
16.
Aquac Nutr ; 2022: 8016616, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36860444

RESUMEN

Since high-fat diet (HFD) intake elevates liver cholesterol and enhanced cholesterol-bile acid flux alleviates its lipid deposition, we assumed that the promoted cholesterol-bile acid flux is an adaptive metabolism in fish when fed an HFD. The present study investigated the characteristic of cholesterol and fatty acid metabolism in Nile tilapia (Oreochromis niloticus) after feeding an HFD (13% lipid level) for four and eight weeks. Visually healthy Nile tilapia fingerlings (average weight 3.50 ± 0.05 g) were randomly distributed into four treatments (4-week control diet or HFD and 8-week control diet or HFD). The liver lipid deposition and health statue, cholesterol/bile acid, and fatty acid metabolism were analyzed in fish after short-term and long-term HFD intake. The results showed that 4-week HFD feeding did not change serum alanine transaminase (ALT) and aspartate transferase (AST) enzyme activities, along with comparable liver malondialdehyde (MDA) content. But higher serum ALT and AST enzyme activities and liver MDA content were observed in fish fed 8-week HFD. Intriguingly, remarkably accumulated total cholesterol (mainly cholesterol ester, CE) was observed in the liver of fish fed 4-week HFD, along with slightly elevated free fatty acids (FFAs) and comparable TG contents. Further molecular analysis in the liver showed that obvious accumulation of CE and total bile acids (TBAs) in fish fed 4-week HFD was mainly attributed to the enhancement of cholesterol synthesis, esterification, and bile acid synthesis. Furthermore, the increased protein expressions of acyl-CoA oxidase 1/2 (Acox1 and Acox2), which serve as peroxisomal fatty acid ß-oxidation (FAO) rate-limiting enzymes and play key roles in the transformation of cholesterol into bile acids, were found in fish after 4-week HFD intake. Notably, 8-week HFD intake remarkably elevated FFA content (about 1.7-fold increase), and unaltered TBAs were found in fish liver, accompanied by suppressed Acox2 protein level and cholesterol/bile acid synthesis. Therefore, the robust cholesterol-bile acid flux serves as an adaptive metabolism in Nile tilapia when fed a short-term HFD and is possibly via stimulating peroxisomal FAO. This finding enlightens our understanding on the adaptive characteristics of cholesterol metabolism in fish fed an HFD and provides a new possible treatment strategy against metabolic disease induced by HFD in aquatic animals.

17.
Fish Physiol Biochem ; 48(1): 145-159, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034221

RESUMEN

Many metabolic diseases in fish are often associated with lowered mitochondrial fatty acid ß-oxidation (FAO). However, the physiological role of mitochondrial FAO in lipid metabolism has not been verified in many carnivorous fish species, for example in largemouth bass (Micropterus salmonids). In the present study, a specific mitochondrial FAO inhibitor, mildronate (MD), was used to investigate the effects of impaired mitochondrial FAO on growth performance, health status, and lipid metabolism of largemouth bass. The results showed that the dietary MD treatment significantly suppressed growth performance and caused heavy lipid accumulation, especially neutral lipid, in the liver. The MD-treated fish exhibited lower monounsaturated fatty acid and higher long-chain polyunsaturated fatty acids in the muscle. The MD treatment downregulated the gene expressions in lipolysis and lipogenesis, as well as the expressions of the genes and some key proteins in FAO without enhancing peroxisomal FAO. Additionally, the MD-treated fish had lower serum aspartate aminotransferase activity and lower pro-inflammation- and apoptosis-related genes in the liver. Taken together, MD treatment markedly induced lipid accumulation via depressing lipid catabolism. Our findings reveal the pivotal roles of mitochondrial FAO in maintaining health and lipid homeostasis in largemouth bass and could be hopeful in understanding metabolic diseases in farmed carnivorous fish.


Asunto(s)
Lubina , Metabolismo de los Lípidos , Metilhidrazinas/efectos adversos , Animales , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Dieta/veterinaria , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
18.
Fish Physiol Biochem ; 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044098

RESUMEN

Bile acids (BAs) are a class of cholesterol-derived amphipathic molecules approved as new animal feed additives. However, the functional researches mainly focused on BAs mixture, and the influence of the individual BA on fishes was still limited. In the present study, Nile tilapia were fed basal diet with three levels of sodium taurocholate at 0 mg/kg (CON), 300 mg/kg (TCAL), and 600 mg/kg (TCAH) for 8 weeks. The results indicated that addition of sodium taurocholate did not significantly influence the growth performance. Instead, TCAH group had higher cholesterol accumulation with liver fibrosis. In TCAH group, the level of nuclear factor E2-related factor 2 (nrf2) signaling-associated oxidative stress factors significantly increased in the liver. Additionally, fish in TCAH group had the highest expression level of genes encoding endoplasmic reticulum (ER) stress and inflammatory cytokines in the liver. In conclusion, 300 mg/kg of sodium taurocholate did not significantly influence the growth performance of fish, while 600 mg/kg of sodium taurocholate markedly induced cholesterol accumulation and liver injury, suggesting that the application of taurocholic acid in aquafeed should be re-evaluated.

19.
Annu Rev Pharmacol Toxicol ; 58: 471-507, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28968193

RESUMEN

Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.


Asunto(s)
Neonicotinoides/efectos adversos , Neonicotinoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/efectos adversos , Antioxidantes/farmacología , Humanos , Insecticidas/efectos adversos , Insecticidas/farmacología
20.
Nitric Oxide ; 111-112: 14-30, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33839259

RESUMEN

Hydrogen sulfide (H2S) is an important gaseous signal molecule which participates in various abiotic stress responses. However, the underlying mechanism of H2S associated salt tolerance remains elusive. In this study, sodium hydrosulfide (NaHS, donor of H2S) was used to investigate the protective role of H2S against salt stress at the biochemical and proteomic levels. Antioxidant activity and differentially expressed proteins (DEPs) of rice seedlings treated by NaCl or/and exogenous H2S were investigated by the methods of biochemical approaches and comparative proteomic analysis. The protein-protein interaction (PPI) analysis was used for understanding the interaction networks of stress responsive proteins. In addition, relative mRNA levels of eight selected identified DEPs were analyzed by quantitative real-time PCR. The result showed that H2S alleviated oxidative damage caused by salt stress in rice seedling. The activities of some antioxidant enzymes and glutathione metabolism were mediated by H2S under salt stress. Proteomics analyses demonstrated that NaHS regulated antioxidant related proteins abundances and affected related enzyme activities under salt stress. Proteins related to light reaction system (PsbQ domain protein, plastocyanin oxidoreductase iron-sulfur protein), Calvin cycle (phosphoglycerate kinase, sedoheptulose-1,7-bisphosphatase precursor, ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll biosynthesis (glutamate-1-semialdehyde 2,1-aminomutase, coproporphyrinogen III oxidase) are important for NaHS against salt stress. ATP synthesis related proteins, malate dehydrogenase and 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase were up-regulated by NaHS under salt stress. Protein metabolism related proteins and cell structure related proteins were recovered or up-regulated by NaHS under salt stress. The PPI analysis further unraveled a complicated regulation network among above biological processes to enhance the tolerance of rice seedling to salt stress under H2S treatment. Overall, our results demonstrated that H2S takes protective roles in salt tolerance by mitigating oxidative stress, recovering photosynthetic capacity, improving primary and energy metabolism, strengthening protein metabolism and consolidating cell structure in rice seedlings.


Asunto(s)
Sulfuro de Hidrógeno/farmacología , Oryza/efectos de los fármacos , Sustancias Protectoras/farmacología , Estrés Salino/efectos de los fármacos , Plantones/efectos de los fármacos , Enzimas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Sulfuros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA