Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587792

RESUMEN

Euphorbia lathyris L. is a biennial herb in the Euphorbiaceae that has been used as a medicinal plant. It is distributed or cultivated worldwide, and the seeds of E. lathyris are the main source of ingenol, which is the precursor of Picato, the first medicine approved by USFDA for the treatment of solar keratosis (Abramovits et al. 2013). However, the production of E. lathyris can be severely hampered by the occurrence of plant diseases. Between 2020-2022 (specifically in October-November of each year), anthracnose-like symptoms were observed on E. lathyris in fields (E 118°49'50″, N 32°3'33″) in Nanjing, Jiangsu Province, China. The incidence of E. lathyris with disease symptoms was between 25%-30% (n = 100). The lesions on the leaves were evident initially as dark brown spots, which expanded into larger necrotic spots, finally resulting in leaves withering and dropping off. In severe cases, stem wilting was also observed. To determine the causal agent, we collected diseased leaf samples (n = 20) from different E. lathyris plants in the field (~ 1800 m2). After cleaning, the junctions of the diseased and healthy parts were excised and sterilized in 75% ethanol for 20-25 seconds, and rinsed with sterile water. After that, they were transferred onto potato sucrose agar (PSA) plates and placed at 25℃ for 3-4 days, until fungal growth was evident. The fungus was purified by recovering single conidia and growing them on PSA (Hu et al. 2015). A consistent fungal colony, based on morphological characteristics, was recovered from 17 samples. The colony color was initially white, green in the middle, and gradually changed into gray green as the colony matured. Conidia were transparent and cylindrical (22-28 µm × 7-9 µm, n = 50). Five loci informative (ITS, TUB, ACT, GAPDH, and CHS-1) (Weir et al. 2012) for Colletotrichum spp. identification were sequenced from two isolates ELC-1 and ELC-2 obtained from different plant individuals. Compared with a reference isolate (Colletotrichum gloeosporioides ZH3), the GAPDH, CHS-1, and TUB2 sequences of ELC-1 and ELC-2 showed 95% (263 bp out of 275 bp), 98% (295 bp out of 299 bp), and 99% (711 bp out of 712 bp and 717 bp out of 719 bp) similarity, respectively. The ITS sequence identities were 100% (577 bp out of 577 bp) and 99% (594 bp out of 597 bp), while the ACT sequence identities were 100% (281 bp out of 281 bp) and 98% (279 bp out of 284 bp). All sequences have been deposited in Genbank database (OR865865-OR865866 and OR873625-OR873632). After performing phylogenetic analysis with Mega 11, the pathogen was confirmed as C. gloeosporioides. To fulfil Koch's postulates, we sprayed six-week-old healthy plants with a conidia suspension of C. gloeosporioides (106 spores/mL) or sterile water (serve as control). The inoculated plants were placed at 25℃, 100% relative humidity, and 12-h photoperiod (Zhang et al. 2021). Six plants were inoculated for each treatment, and the experiment was repeated three times. After 6-8 days, the plants inoculated with C. gloeosporioides showed similar symptoms to those observed on diseased plants in the field, while the control plants remained healthy and free of disease. The pathogens were then re-isolated and identified as C. gloeosporioides. To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on E. lathyris. Anthracnose may cause significant yield losses in E. lathyris production, and our results will provide experimental and theoretical basis for the management of the disease.

2.
Nat Prod Res ; : 1-5, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39435483

RESUMEN

The contents of 57 ginsenosides were measured in American ginseng roots collected from a single population grown in Jilin. Ginsenoside contents and compositions varied significantly among the population. The most abundant ginsenoside within the American ginseng root and by population was either Rg1 or Re, followed by Rb1, mal-Rb1, Rd, Rc, pseudoginsenoside F11, Ro, and gypenoside XVII. According to the relative contents of Rg1 and Re, the population was grouped into two chemotypes, and there were significant differences in ginsenoside profiles between them. The contents of protopanaxadiol-type ginsenosides were relatively stable. The rate-limiting enzymes of malonyl ginsenosides biosynthesis were located in front of their corresponding neutral ginsenosides. The regulatory sites of the oleanolic acid-type ginsenosides biosynthetic pathway were in front of the ß-amyrin.

3.
Pest Manag Sci ; 79(7): 2423-2432, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36810871

RESUMEN

BACKGROUND: Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice, and novel fungicides for controlling rice blast are needed owing to the problem of resistance to commonly used control agents. We previously found that methanol extract of Lycoris radiata (L'Her.) Herb. showed an excellent inhibitory effect on mycelial growth of M. oryzae, indicating its potential for developing control agents against M. oryzae. In this study, we aim to investigate the antifungal effects of different Lycoris spp. against M. oryzae, and clarify the main active components. RESULTS: Extracts from bulbs of seven Lycoris spp. showed excellent inhibitory effects on mycelial growth and spore germination of M. oryzae at 400 mg L-1 . Liquid chromatography-tandem mass spectrometry was employed to analyze the components of the extracts, and heatmap clustering analysis with Mass Profiler Professional software revealed that lycorine and narciclasine may be the main active components. Lycorine and narciclasine, together with three other amaryllidaceous alkaloids (AAs), were then isolated from bulbs of Lycoris spp. Antifungal assays showed that lycorine and narciclasine had good inhibitory activities against M. oryzae in vitro, but the other three AAs showed no antifungal activities under test concentrations. In addition, lycorine and the ethyl acetate part of L. radiata showed good antifungal effects against M. oryzae in vivo, but narciclasine showed phototoxicity on rice when used alone. CONCLUSION: Extracts of test Lycoris spp. and the main active component lycorine have excellent antifungal activities against M. oryzae, and are good candidates for developing control agents against M. oryzae. © 2023 Society of Chemical Industry.


Asunto(s)
Alcaloides , Lycoris , Magnaporthe , Oryza , Lycoris/química , Alcaloides/química , Antifúngicos/farmacología , Enfermedades de las Plantas/prevención & control
4.
Pest Manag Sci ; 78(8): 3345-3355, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35491536

RESUMEN

BACKGROUND: Lack of control agents and development of bacterial resistance are emergent problems in the chemical control of rice bacterial blight, therefore novel bactericides against Xanthomonas oryzae pv. oryzae (Xoo, the causal agent of rice bacterial blight) are urgently needed. We previously found that parthenolide (PTL) is a potential lead against Xoo, and PTL inhibits Xoo growth via oxidative stress. However, the mechanism of action of PTL against Xoo needs further elucidation. RESULTS: In this study, a biotinylated PTL probe was synthesized, and two important subunits in the respiratory chain (NuoF of complex I and SdhB of complex II) of Xoo were captured with the probe and identified with liquid chromatography tandem mass spectrometry (LC-MS/MS). The binding between them was verified with pull-down and drug affinity responsive target stability technologies. In addition, purified proteins of NuoF and SdhB greatly lowered the antibacterial activity of PTL, and PTL evidently inhibited the enzyme activities of complexes I and II. Moreover, knockout of nuoF and sdhB in Xoo caused elevated reactive oxygen species (ROS) levels and increased sensitivity to PTL. Furthermore, molecular simulations indicated that PTL may form covalent bonds with Cys105 and Cys187 in NuoF and Cys106 in SdhB. CONCLUSION: PTL can directly bind to NuoF and SdhB, which impairs the enzyme functions of complexes I and II in the respiratory chain, leading to ROS accumulation in Xoo. This study will provide deep insight into the mechanism of action of PTL against Xoo. © 2022 Society of Chemical Industry.


Asunto(s)
Oryza , Xanthomonas , Antibacterianos/farmacología , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Oryza/metabolismo , Estrés Oxidativo , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA