Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605226

RESUMEN

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Asunto(s)
Células Madre Hematopoyéticas , Metiltransferasas , Proteínas de Unión al ARN , Pez Cebra , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ciclo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proliferación Celular
2.
PLoS Genet ; 18(3): e1009841, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245286

RESUMEN

Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish.


Asunto(s)
Degeneración Retiniana , Pez Cebra , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas del Ojo/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Nucleic Acids Res ; 49(4): 2027-2043, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33476374

RESUMEN

Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5' splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.


Asunto(s)
Empalme Alternativo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Retina/embriología , Proteínas de Pez Cebra/fisiología , Animales , Apoptosis , Sistemas CRISPR-Cas , Supervivencia Celular , Daño del ADN , Reparación del ADN , Exones , Técnicas de Inactivación de Genes , Puntos de Control de la Fase M del Ciclo Celular , Células-Madre Neurales/citología , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Huso Acromático/ultraestructura , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Blood ; 133(8): 805-815, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30482793

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium via the endothelial-to-hematopoietic transition, are self-renewing, and replenish all lineages of blood cells throughout life. BCAS2 (breast carcinoma amplified sequence 2) is a component of the spliceosome and is involved in multiple biological processes. However, its role in hematopoiesis remains unknown. We established a bcas2 knockout zebrafish model by using transcription activator-like effector nucleases. The bcas2 -/- zebrafish showed severe impairment of HSPCs and their derivatives during definitive hematopoiesis. We also observed significant signs of HSPC apoptosis in the caudal hematopoietic tissue of bcas2 -/- zebrafish, which may be rescued by suppression of p53. Furthermore, we show that the bcas2 deletion induces an abnormal alternative splicing of Mdm4 that predisposes cells to undergo p53-mediated apoptosis, which provides a mechanistic explanation of the deficiency observed in HSPCs. Our findings revealed a novel and vital role for BCAS2 during HSPC maintenance in zebrafish.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario , Células Madre Hematopoyéticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Técnicas de Silenciamiento del Gen , Proteínas de Neoplasias/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
J Biol Chem ; 294(38): 13953-13963, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31362982

RESUMEN

Mutations in human prominin 1 (PROM1), encoding a transmembrane glycoprotein localized mainly to plasma membrane protrusions, have been reported to cause retinitis pigmentosa, macular degeneration, and cone-rod dystrophy. Although the structural role of PROM1 in outer-segment (OS) morphogenesis has been demonstrated in Prom1-knockout mouse, the mechanisms underlying these complex disease phenotypes remain unclear. Here, we utilized a zebrafish model to further investigate PROM1's role in the retina. The Prom1 orthologs in zebrafish include prom1a and prom1b, and our results showed that prom1b, rather than prom1a, plays an important role in zebrafish photoreceptors. Loss of prom1b disrupted OS morphogenesis, with rods and cones exhibiting differences in impairment: cones degenerated at an early age, whereas rods remained viable but with an abnormal OS, even at 9 months postfertilization. Immunofluorescence experiments with WT zebrafish revealed that Prph2, an ortholog of the human transmembrane protein peripherin 2 and also associated with OS formation, is localized to the edge of OS and is more highly expressed in the cone OS than in the rod OS. Moreover, we found that Prom1b deletion causes mislocalization of Prph2 and disrupts its oligomerization. We conclude that the variation in Prph2 levels between cones and rods was one of the reasons for the different PROM1 mutation-induced phenotypes of these retinal structures. These findings expand our understanding of the phenotypes caused by PROM1 mutations and provide critical insights into its function.


Asunto(s)
Antígeno AC133/metabolismo , Células Fotorreceptoras/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Antígeno AC133/genética , Animales , Distrofias de Conos y Bastones/genética , Modelos Animales de Enfermedad , Células HeLa , Humanos , Degeneración Macular/metabolismo , Proteínas de la Membrana/metabolismo , Morfogénesis , Mutación , Periferinas/genética , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/fisiopatología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/genética , Eliminación de Secuencia , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Mol Vis ; 26: 670-678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088171

RESUMEN

Purpose: To identify the genetic cause in a four-generation Chinese family with Axenfeld-Rieger syndrome (ARS). Methods: The family members received clinical examinations of the eye, tooth, periumbilical skin, and heart. Sanger sequencing and whole-exome sequencing (WES) were performed to screen potential mutations. The genomic deletion region around the PITX2 gene was estimated from single nucleotide polymorphism (SNP) data from WES and then confirmed with "quantitative PCR (qPCR) using a set of primers. The DNA breakpoint was further identified with long-range PCR and Sanger sequencing. Results: Symptoms including anterior segment dysplasia of the eye (iris dysplasia, multiple pupils, and posterior embryotoxon), dental dysplasia, and periumbilical skin redundancy were present in all of the affected individuals. Three of them had glaucoma. Corneal abnormalities (inferior sclerocornea, corneal endothelial dystrophy, and central corneal scar) were seen in most of the affected individuals. Cataract, limited eye movement, electrocardiographic abnormalities, intellectual disability, and recurrent miscarriages were observed in some of the affected individuals. No mutations in the coding and exon-intron adjacent regions of the PITX2 and FOXC1 genes were identified with Sanger sequencing. According to the SNP data from WES, we suspected that there might be a deletion region (at most 1.6 Mb) around the PITX2 gene. With the use of qPCR and long-range PCR, we identified a 53,840 bp deletion (chr4: 111,535,454-111,588,933) spanning PITX2 and PANCR. The genomic deletion cosegregated with the major ARS symptoms observed in the family members. Conclusions: With the help of WES, qPCR, and long-range PCR, we identified a genomic deletion encompassing PITX2 and the adjacent noncoding gene PANCR in a Chinese family with ARS. The clinical features of the affected individuals are reported. This work may broaden understanding of the phenotypic and mutational spectrums related to ARS.


Asunto(s)
Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/genética , Enfermedades Hereditarias del Ojo/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Adulto , Segmento Anterior del Ojo/fisiopatología , Pueblo Asiatico , Electrocardiografía , Anomalías del Ojo/fisiopatología , Enfermedades Hereditarias del Ojo/fisiopatología , Femenino , Factores de Transcripción Forkhead/genética , Genotipo , Glaucoma/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Eliminación de Secuencia , Secuenciación del Exoma , Proteína del Homeodomínio PITX2
7.
J Biol Chem ; 292(15): 6225-6239, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28209709

RESUMEN

Mutations in retinitis pigmentosa 2 (RP2) account for 10-20% of X-linked retinitis pigmentosa (RP) cases. The encoded RP2 protein is implicated in ciliary trafficking of myristoylated and prenylated proteins in photoreceptor cells. To date >70 mutations in RP2 have been identified. How these mutations disrupt the function of RP2 is not fully understood. Here we report a novel in-frame 12-bp deletion (c.357_368del, p.Pro120_Gly123del) in zebrafish rp2 The mutant zebrafish shows reduced rod phototransduction proteins and progressive retinal degeneration. Interestingly, the protein level of mutant Rp2 is almost undetectable, whereas its mRNA level is near normal, indicating a possible post-translational effect of the mutation. Consistent with this hypothesis, the equivalent 12-bp deletion in human RP2 markedly impairs RP2 protein stability and reduces its protein level. Furthermore, we found that a majority of the RP2 pathogenic mutations (including missense, single-residue deletion, and C-terminal truncation mutations) severely destabilize the RP2 protein. The destabilized RP2 mutant proteins are degraded via the proteasome pathway, resulting in dramatically decreased protein levels. The remaining non-destabilizing mutations T87I, R118H/R118G/R118L/R118C, E138G, and R211H/R211L are suggested to impair the interaction between RP2 and its protein partners (such as ARL3) or with as yet unknown partners. By utilizing a combination of in silico, in vitro, and in vivo approaches, our work comprehensively indicates that loss of RP2 protein structural stability is the predominating pathogenic consequence for most RP2 mutations. Our study also reveals a role of the C-terminal domain of RP2 in maintaining the overall protein stability.


Asunto(s)
Secuencia de Bases , Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Degeneración Retiniana , Eliminación de Secuencia , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proteínas del Ojo/genética , Proteínas de Unión al GTP , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Dominios Proteicos , Estabilidad Proteica , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
Hum Genet ; 137(10): 779-794, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30242501

RESUMEN

Most cases of Usher syndrome type II (USH2) are due to mutations in the USH2A gene. There are no effective treatments or ideal animal models for this disease, and the pathological mechanisms of USH2 caused by USH2A mutations are still unknown. Here, we constructed a ush2a knockout (ush2a-/-) zebrafish model using TALEN technology to investigate the molecular pathology of USH2. An early onset auditory disorder and abnormal morphology of inner ear stereocilia were identified in the ush2a-/- zebrafish. Consequently, the disruption of Ush2a in zebrafish led to a hearing impairment, like that in mammals. Electroretinography (ERG) test indicated that deletion of Ush2a affected visual function at an early stage, and histological analysis revealed that the photoreceptors progressively degenerated. Rod degeneration occurred prior to cone degeneration in ush2a-/- zebrafish, which is consistent with the classical description of the progression of retinitis pigmentosa (RP). Destruction of the outer segments (OSs) of rods led to the down-regulation of phototransduction cascade proteins at late stage. The expression of Ush1b and Ush1c was up-regulated when Ush2a was null. We also found that disruption of fibronectin assembly at the retinal basement membrane weakened cell adhesion in ush2a-/- mutants. In summary, for the first time, we generated a ush2a knockout zebrafish line with auditory disorder and retinal degeneration which mimicked the symptoms of patients, and revealed that disruption of fibronectin assembly may be one of the factors underlying RP. This model may help us to better understand the pathogenic mechanism and find treatment for USH2 in the future.


Asunto(s)
Proteínas de la Matriz Extracelular , Técnicas de Inactivación de Genes , Síndromes de Usher , Proteínas de Pez Cebra , Pez Cebra , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patología , Síndromes de Usher/fisiopatología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Hum Mol Genet ; 24(16): 4648-59, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26034134

RESUMEN

Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies.


Asunto(s)
Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retinitis Pigmentosa/metabolismo , Transducina/metabolismo , Proteínas de Pez Cebra/deficiencia , Animales , Proteínas del Ojo , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Técnicas de Silenciamiento del Gen , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Ratones , Células Fotorreceptoras de Vertebrados/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Transducina/genética , Pez Cebra
10.
Mol Vis ; 22: 234-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27081294

RESUMEN

PURPOSE: To investigate the genetic basis and its relationship to the clinical manifestations in a four generation Chinese family with autosomal dominant retinitis pigmentosa. METHODS: Ophthalmologic examinations including fundus photography, fundus autofluorescence imaging, fundus fluorescein angiography, optical coherence tomography, and a best-corrected visual acuity test were performed to define the clinical features of the patients. We extracted the genomic DNA from peripheral blood samples. The proband's genomic DNA was submitted to the whole exome sequencing. RESULTS: Whole exome sequencing and the subsequent data analysis detected six candidate mutations in the proband of this pedigree. The novel c.146 C>T mutation in NRL was found to be the only mutation that co-segregated with the disease in this pedigree. This mutation resulted in a substitution of proline by a leucine at position 49 of NRL protein (p.P49L). Most importantly, the proline residue at position 49 of NRL is highly conserved from zebrafish to humans. The c.146 C>T mutation was not observed in 200 control individuals. What's more, we performed the luciferase activity assay to prove that this mutation we detected alters the NRL protein function. CONCLUSIONS: The c.146 C>T mutation in NRL gene causes autosomal dominant retinitis pigmentosa for this family. Our finding not only expands the mutation spectrum of NRL, but also demonstrates that whole-exome sequencing is a powerful strategy to detect causative genes and mutations in RP patients. This technique may provide a precise diagnosis for rare heterogeneous monogenic disorders such as RP.


Asunto(s)
Pueblo Asiatico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Exoma/genética , Proteínas del Ojo/genética , Mutación Puntual , Retinitis Pigmentosa/genética , Adulto , Anciano , China/epidemiología , Electrorretinografía , Femenino , Angiografía con Fluoresceína , Humanos , Masculino , Persona de Mediana Edad , Linaje , Reacción en Cadena de la Polimerasa , Retinitis Pigmentosa/diagnóstico , Análisis de Secuencia de ADN , Tomografía de Coherencia Óptica , Pruebas del Campo Visual , Campos Visuales , Adulto Joven
12.
Eur J Med Genet ; 67: 104909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199457

RESUMEN

BACKGROUND: The 2015 American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) guidelines articulates that the effects of certain types of variants on gene function can often be seen as a complete absence of the gene product by leading to a lack of transcription or nonsense-mediated decay(NMD). However, detailed information considering different types of loss of function(LOF) variants, refined steps assimilating details concerning location of variant, changes in strength levels, NMD boundary, or any additional information pointing to a true null effect, were all left to expert judgement. As part of its Clinical Genome Resource (ClinGen) initiative, Variant Curation Expert Panels (VCEPs) are designated to make gene/disease-centric specifications in accordance with the ACMG/AMP guidelines, including a more detailed definition of what constitutes an appropriate LOF evidence. Our goal was to evaluate the current LOF guidelines developed by the VCEPs and analyse the prior curated variants concerning the PVS1 criteria, bringing people occupied in genetic data analysis a comprehensive understanding of this code. METHODS: Our study evaluated 7 VCEPs for their LOF criteria (PVS1). Subsequently, we assessed the predictive criteria by considering the underlying disease mechanism, protein transcript, and variant types delineated. Then, we meticulously curated the LOF evidence referenced by each VCEP in their preliminary variant classification, thereby scrutinizing the recommendations put forth by VCEPs and their application in the interpretation of the aforementioned predictive criteria. Based on these, an extensive curation of evidence summary considering PVS1 applied by VCEPs according to their classification of pilot variants for the purpose of analyzing VCEP criteria specifications and their use in the understanding of LOF was conducted. RESULTS: We observed in this article that the VCEPs discussed followed the majority of Sequence Variant Interpretation (SVI) recommendations concerning the application of this LOF criteria, except for some disease/gene specific considerations. We highlighted the wide range of PVS1 strength levels approved by VCEP, reflecting the diversity of evidence for each variants type. In addition, we observed substantial differences in the approach used to determine relative strengths for different types of null variants and in the attitude towards these principles concerning variant location, NMD and influence to protein function between VCEPs. CONCLUSIONS: It is difficult to understand the intricacies of the predictive data(PVS1), which often requires expert-level knowledge of disease/gene. The VCEP criteria specifications for the predictive evidence play an important role in making it more accessible for the curators to apply the predictive data by providing details concerning this complex criteria. Despite this, we believe there is a need for more guidance on standardizing this process and ensuring consistency in the application of this predictive evidence.


Asunto(s)
Variación Genética , Genoma Humano , Humanos , Genómica , Fenotipo , Pruebas Genéticas
13.
Front Cell Dev Biol ; 11: 1169941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351277

RESUMEN

Introduction: Pathogenic mutations in RPGR ORF15, one of two major human RPGR isoforms, were responsible for most X-linked retinitis pigmentosa cases. Previous studies have shown that RPGR plays a critical role in ciliary protein transport. However, the precise mechanisms of disease triggered by RPGR ORF15 mutations have yet to be clearly defined. There are two homologous genes in zebrafish, rpgra and rpgrb. Zebrafish rpgra has a single transcript homologous to human RPGR ORF15; rpgrb has two major transcripts: rpgrb ex1-17 and rpgrb ORF15, similar to human RPGR ex1-19 and RPGR ORF15, respectively. rpgrb knockdown in zebrafish resulted in both abnormal development and increased cell death in the dysplastic retina. However, the impact of knocking down rpgra in zebrafish remains undetermined. Here, we constructed a rpgra mutant zebrafish model to investigate the retina defect and related molecular mechanism. Methods: we utilized transcription activator-like effector nuclease (TALEN) to generate a rpgra mutant zebrafish. Western blot was used to determine protein expression. RT-PCR was used to quantify gene transcription levels. The visual function of embryonic zebrafish was detected by electroretinography. Immunohistochemistry was used to observe the pathological changes in the retina of mutant zebrafish and transmission electron microscope was employed to view subcellular structure of photoreceptor cells. Results: A homozygous rpgra mutant zebrafish with c.1675_1678delins21 mutation was successfully constructed. Despite the normal morphological development of the retina at 5 days post-fertilization, visual dysfunction was observed in the mutant zebrafish. Further histological and immunofluorescence assays indicated that rpgra mutant zebrafish retina photoreceptors progressively began to degenerate at 3-6 months. Additionally, the mislocalization of cone outer segment proteins (Opn1lw and Gnb3) and the accumulation of vacuole-like structures around the connecting cilium below the OSs were observed in mutant zebrafish. Furthermore, Rab8a, a key regulator of opsin-carrier vesicle trafficking, exhibited decreased expression and evident mislocalization in mutant zebrafish. Discussion: This study generated a novel rpgra mutant zebrafish model, which showed retinal degeneration. our data suggested Rpgra is necessary for the ciliary transport of cone-associated proteins, and further investigation is required to determine its function in rods. The rpgra mutant zebrafish constructed in this study may help us gain a better understanding of the molecular mechanism of retinal degeneration caused by RPGR ORF15 mutation and find some useful treatment in the future.

14.
BMC Med Genomics ; 16(1): 262, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880672

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) significantly improves the diagnosis of the etiology of fetal structural anomalies. This study aims to evaluate the diagnostic value of prenatal WES and to investigate the pathogenic variants in structurally abnormal fetuses. METHODS: We recruited 144 fetuses with structural anomalies between 14 and 2020 and 15 December 2021 in the study. Genetic screening was performed by WES combined with karyotyping and chromosomal microarray analysis. The molecular diagnostic yield of prenatal WES for each type of fetal structural anomaly and the identified pathogenic genes and mutations were reported. RESULTS: In this study, we retrospectively analyzed the clinical and genetic data of 145 structurally anomalous fetuses. These cases were classified into 9 phenotypic classes based on antenatal ultrasound findings. Thirty-eight pathogenic variants in 24 genes were identified in 35 of the 145 cases, including 14 novel variants in 13 genes (EP300, MYH3, TSC2, MMP9, CPLANE1, INVS, COL1A1, EYA1, TTC21B, MKS1, COL11A2, PDHA1 and L1CAM). Five additional pathogenic variants were classified as incidental findings. Our study showed that the overall diagnosis rate of WES was 28.1% (27/96) in the parent-fetus trio cases and 16.3% (8/49) in the proband-only cases. Fetuses with musculoskeletal anomalies had the highest diagnostic yield (51.4%, 19/37). In addition, FGFR3 and COL1A1 were the most common pathogenic genes. CONCLUSIONS: Our work expands the mutation spectrum of the genes associated with fetal structural anomalies and provides valuable information for future parental genetic counselling and pregnancy management of the structurally anomalous fetuses.


Asunto(s)
Anomalías Congénitas , Pueblos del Este de Asia , Secuenciación del Exoma , Feto , Ultrasonografía Prenatal , Femenino , Humanos , Embarazo , Feto/anomalías , Feto/diagnóstico por imagen , Primer Trimestre del Embarazo , Diagnóstico Prenatal , Estudios Retrospectivos , Anomalías Congénitas/diagnóstico por imagen , Anomalías Congénitas/genética
15.
Front Genet ; 14: 1170720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693318

RESUMEN

Object: To investigate the chromosome abnormalities associated with absent or hypoplastic fetal nasal bone. Methods: Patients with fetal nasal bone anomalies (NBA) referred to our center for prenatal diagnosis between 2017 and 2021 were retrospectively evaluated. All these patients underwent chromosomal microarray and/or karyotyping and received genetic counseling before and after testing. Results: Among 320 fetuses with NBA, chromosomal abnormalities were diagnosed in 89 (27.8%) cases, including 53 cases of trisomy 21, which was the most common type of chromosomal aneuploidy, accounting for 59.6% of all detected abnormalities. In addition to aneuploidies, 29 cases of copy number variants (CNVs) were detected. In cases of isolated NBA with low-risk screening results and without other risk factors, the incidence of fetal chromosomal aneuploidies and pathogenic CNVs is 5.3% (7 in 132 cases). Conclusion: This study suggests that parents of fetuses should be informed about the possibility of fetal aneuploidy and pathogenic CNVs and that discussion with the parents is also recommended, providing data support and reference for clinical counseling.

16.
Clin Biochem ; 113: 64-69, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610469

RESUMEN

BACKGROUND: α-thalassemia is an inherited blood disorder caused by variants in the α-globin gene cluster. Identification of the pathogenic α-globin gene variants is important for the diagnosis and management of thalassemia. METHODS: Two suspected families from Xiantao, Hubei Province were recruited in this study. The family members underwent hemoglobin testing. Polymerase Chain Reaction based reverse dot blot (PCR-RDB) was employed to identify the known variants. Next-generation sequencing (NGS) and third-generation sequencing (TGS) were performed to screen the potential disease-causing variants, which were validated by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). RESULTS: Hematological analysis suggested that proband A had α-thalassemia traits, and proband B had HbH disease traits. However, only a -α3.7 mutation had been detected by PCR-RDB and NGS in the proband of family B. Subsequent TGS identified a novel 10.3 kb deletion (NC_000016.10:g.172342-182690del) covering the HBA1, HBQ1 and HBA2 genes in the α-globin gene cluster in both family A and B, which was confirmed by Sanger sequencing and MLPA. These results indicated that the novel deletion is likely responsible for α-thalassemia. CONCLUSION: A novel α-thalassemia deletion was identified for the two families by TGS. Our work broadened the molecular spectrum of α-thalassemia, and was beneficial for the diagnosis, genetic counseling and management of α-thalassemia.


Asunto(s)
Talasemia alfa , Humanos , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Linaje , Mutación , Reacción en Cadena de la Polimerasa Multiplex , Globinas alfa/genética
17.
Front Genet ; 13: 1046096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386852

RESUMEN

Objective: To demonstrate the feasibility of haplotype-based noninvasive prenatal diagnosis of Facioscapulohumeral Muscular Dystrophy type 1 (FSHD1). Methods: Bionano optical mapping was used to identify the D4Z4 structural variation of the genomic DNA sample from the proband affected with FSHD1. In addition, based on the technique of next generation sequencing, the pathogenic haplotype was determined by using trio strategy through genotyping his parents, and also fetal inheritance of paternal haplotypes was then deduced using the Hidden Markov Model. Results: Bionano optical mapping analysis revealed that the proband has only three D4Z4 repeats left in the 4q35 chromosomal region and a disease-permitting 4qA haplotype. The other normal allele of the proband contains 29 D4Z4 repeats and also a 4qA haplotype. The noninvasive cell-free fetal DNA (cffDNA)-based haplotype analysis suggested that the fetus inherited the pathogenic allele from his father and thus was predicted to be affected by FSHD1. In addition, Bionano optical mapping also demonstrated the presence of the pathogenic allele in the fetus by interrogating the genomic DNA from the amniotic fluid cells. Conclusion: Our study showed the cffDNA-based haplotyping was feasible for the noninvasive prenatal diagnosis of FSHD1, which is able to provide earlier testing results with a lower risk of miscarriage and infection than invasive techniques.

19.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2694-2705, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348989

RESUMEN

Leber congenital amaurosis (LCA) is the most serious form of inherited retinal dystrophy that leads to blindness or severe visual impairment within a few months after birth. Approximately 1-2% of the reported cases are caused by mutations in the LCA5 gene. This gene encodes a ciliary protein called LCA5 that is localized to the connecting cilium of photoreceptors. The retinal phenotypes caused by LCA5 mutations and the underlying pathological mechanisms are still not well understood. In this study, we knocked out the lca5 gene in zebrafish using CRISPR/Cas9 technology. An early onset visual defect is detected by the ERG in 7 dpf lca5-/- zebrafish. Histological analysis by HE staining and immunofluorescence reveal progressive degeneration of rod and cone photoreceptors, with a pattern that cones are more severely affected than rods. In addition, ultrastructural analysis by transmission electron microscopy shows disordered and broken membrane discs in rods' and cones' outer segments, respectively. In our lca5-/- zebrafish, the red-cone opsin and cone α-transducin are selectively mislocalized to the inner segment and synaptic terminal. Moreover, we found that Ift88, a key component of the intraflagellar transport complex, is retained in the outer segments. These data suggest that the intraflagellar transport complex-mediated outer segment protein trafficking might be impaired due to lca5 deletion, which finally leads to a type of retinal degeneration mimicking the phenotype of cone-rod dystrophy in human. Our work provides a novel animal model to study the physiological function of LCA5 and develop potential treatments of LCA.


Asunto(s)
Distrofias de Conos y Bastones/genética , Predisposición Genética a la Enfermedad/genética , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Transporte de Proteínas/fisiología , Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Cilios/metabolismo , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Humanos , Amaurosis Congénita de Leber/patología , Proteínas Asociadas a Microtúbulos , Fenotipo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Autophagy ; 15(3): 453-465, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30205735

RESUMEN

Macroautophagy/autophagy is an important intracellular mechanism for the maintenance of cellular homeostasis. Here we show that the CERKL (ceramide kinase like) gene, a retinal degeneration (RD) pathogenic gene, plays a critical role in regulating autophagy by stabilizing SIRT1. In vitro and in vivo, suppressing CERKL results in impaired autophagy. SIRT1 is one of the main regulators of acetylation/deacetylation in autophagy. In CERKL-depleted retinas and cells, SIRT1 is downregulated. ATG5 and ATG7, 2 essential components of autophagy, show a higher degree of acetylation in CERKL-depleted cells. Overexpression of SIRT1 rescues autophagy in CERKL-depleted cells, whereas CERKL loses its function of regulating autophagy in SIRT1-depleted cells, and overexpression of CERKL upregulates SIRT1. Finally, we show that CERKL directly interacts with SIRT1, and may regulate its phosphorylation at Ser27 to stabilize SIRT1. These results show that CERKL is an important regulator of autophagy and it plays this role by stabilizing the deacetylase SIRT1.


Asunto(s)
Autofagia/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Degeneración Retiniana/genética , Sirtuina 1/metabolismo , Proteínas de Pez Cebra/genética , Acetilación , Animales , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/química , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/química , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/genética , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Retinitis Pigmentosa/genética , Sirtuina 1/química , Sirtuina 1/genética , Regulación hacia Arriba , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA