Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 603(7899): 73-78, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038717

RESUMEN

All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1-3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb-Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb-Sn perovskites. Here we develop ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 µm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb-Sn perovskites twofold, to over 5 µm, and increase the efficiency of Pb-Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.

2.
Nano Lett ; 21(18): 7831-7838, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491061

RESUMEN

Perovskite semiconductor nanocrystals are promising for optical amplification and laser applications benefiting from efficient optical gain generation. Nevertheless, the pump threshold is limited by more than one exciton per nanocrystal required to generate population inversion in neutral nanocrystals due to the level degeneracy. Here, we show that by charging nanocrystals with current injection, the level degeneracy can be lifted to generate charged exciton gain with markedly low excitation density. On the basis of the scenario, we have demonstrated electrical switching of amplified spontaneous emission in films of CsPbBr3 nanocrystals sandwiched by two electrodes with over 50% threshold reduction owing to charged excitons. Our work provides an effective approach to electrically modulated optical gain in colloidal perovskite nanocrystals for potential applications in advanced laser and information technology.

3.
J Chem Phys ; 154(21): 214502, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240983

RESUMEN

Quantum dephasing of excitonic transitions in CsPbBr3 nanocrystals has been studied using two-dimensional electronic spectroscopy at cryogenic temperatures. The exciton-phonon interactions for acoustic and optical modes exhibit different effects on the coherent dynamics of excitonic transitions. The homogeneous linewidth shows a proportional dependence on the temperature, suggesting the primary dephasing channel of the elastic scattering between exciton and acoustic modes. The exciton-optical mode interaction is manifested as the beatings of off-diagonal signals in the population time domain at the frequencies of 29 and 51 cm-1, indicating phonon replicas of excitonic transitions arising from coherent exciton-phonon interaction. The insight information of exciton homogeneous broadening in perovskite nanocrystals is essential for the potential application of quantum light sources.

4.
Natl Sci Rev ; 10(1): nwac171, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684521

RESUMEN

Two-dimensional covalent organic frameworks are promising for photocatalysis by virtue of their structural and functional diversity, but generally suffer from low activities relative to their inorganic competitors. To fulfill their full potential requires a rational tailoring of their structures at different scales as well as their surface properties. Herein, we demonstrate benzobisthiazole-based covalent organic frameworks as a superior photocatalyst for hydrogen production. The product features high crystallinity with ordered 2.5-nm-wide cylindrical mesopores and great water wettability. These structural advantages afford our polymeric photocatalyst with fast charge carrier dynamics as evidenced by a range of spectroscopic characterizations and excellent catalytic performances when suspended in solution or supported on melamine foams. Under visible-light irradiation, it enables efficient and stable hydrogen evolution with a production rate of 487 µmol h-1 (or a mass-specific rate of 48.7 mmol g-1 h-1)-far superior to the previous state of the art. We also demonstrate that hydrogen production can be stoichiometrically coupled with the oxidation conversion of biomass as exemplified by the conversion of furfuryl alcohol to 2-furaldehyde.

5.
J Phys Chem Lett ; 12(1): 238-244, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33326243

RESUMEN

The lifetimes of hot carriers have been predicted to be prolonged in small nanocrystals with an inter-level spacing larger than phonon energy. Nevertheless, whether such a phonon bottleneck is present in perovskite semiconductor nanocrystals remains highly controversial. Here we report compelling evidence of a phonon bottleneck in CsPbI3 nanocrystals with marked size-dependent relaxation of hot carriers by using broadband two-dimensional electronic spectroscopy (2DES). By combining high resolutions in both the time (<10 fs) and excitation energy domains, 2DES allows the clear disentanglement of the thermalization and cooling processes. The lifetime is over doubled for hot carriers when the average edge length of the nanocrystals decreases from 8.2 nm down to 4.6 nm. The confirmation of the phonon bottleneck effect suggests the feasibility of controlling hot carrier dynamics in perovskite semiconductors with nanocrystal size for potential applications of hot carrier devices.

6.
J Phys Chem Lett ; 11(23): 10173-10181, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33197186

RESUMEN

Perovskite semiconductor nanocrystals have emerged as an excellent family of materials for optoelectronic applications, where biexciton interaction is essential for optical gain generation and quantum light emission. However, the strength of biexciton interaction remains highly controversial due to the entangled spectral features of the exciton- and biexciton-related transitions in conventional measurement approaches. Here, we tackle the limitation by using polarization-dependent two-dimensional electronic spectroscopy and quantify the excitation energy-dependent biexciton binding energy at cryogenic temperatures. The biexciton binding energy increases with excitation energy, which can be modeled as a near inverse-square size dependence in the effective mass approximation considering the quantum confinement effect. The spectral line width for the exciton-biexciton transition is much broader than that for the ground state to exciton transition, suggesting weakly correlated broadening between these transitions. These inhomogeneity effects should be carefully considered for the future demonstration of optoelectronic applications relying on coherent exciton-biexciton interactions.

7.
J Phys Chem Lett ; 10(6): 1251-1258, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30811208

RESUMEN

Perovskite semiconductor nanocrystals (NCs) exhibit highly efficient optical gain, which is promising for laser applications. However, the intrinsic mechanism of optical gain in perovskite NCs, particularly whether more than one exciton per NCs is required, remains poorly understood. Here, we use two-dimensional electronic spectroscopy to resonantly probe the interplay between near-band-edge transitions during the buildup of optical gain in CsPbBr3 NCs. We find compelling evidence to conclude that optical gain in CsPbBr3 NCs is generated through stimulated emission from strongly interacting biexcitons. The threshold is largely determined by the competition between stimulated emission from biexcitons and excited-state absorption from single exciton to biexciton states. The findings in this work may guide future explorations of NC materials with low-threshold optical gain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA