Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 36(6): 2253-2271, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38416876

RESUMEN

Brassinosteroids (BRs) are widely used as plant growth regulators in modern agriculture. Understanding how BRs regulate nutrient signaling is crucial for reducing fertilizer usage. Here we elucidate that the central BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 (GSK2) interacts directly with and phosphorylates PHOSPHATE STARVATION RESPONSE2 (OsPHR2), the key regulator of phosphate (Pi) signaling, to suppress its transcription factor activity in rice (Oryza sativa). We identify a critical phosphorylation site at serine residue S269 of OsPHR2 and demonstrate that phosphorylation by GSK2 or phosphor-mimic mutation of S269 substantially impairs the DNA-binding activity of OsPHR2, and thus diminishes expression of OsPHR2-induced genes and reduces Pi levels. Like BRs, Pi starvation noticeably induces GSK2 instability. We further show that this site-specific phosphorylation event is conserved in Arabidopsis (Arabidopsis thaliana), but varies among the PHR-family members, being present only in most land plants. These results unveil a distinctive post-transcriptional regulatory mechanism in Pi signaling by which BRs promote Pi acquisition, with a potential contribution to the environmental adaptability of plants during their evolution.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Brasinoesteroides/metabolismo , ADN de Plantas/metabolismo , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fosforilación , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Plant Cell ; 30(3): 638-651, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29475937

RESUMEN

Nitrogen (N) is a major driving force for crop yield improvement, but application of high levels of N delays flowering, prolonging maturation and thus increasing the risk of yield losses. Therefore, traits that enable utilization of high levels of N without delaying maturation will be highly desirable for crop breeding. Here, we show that OsNRT1.1A (OsNPF6.3), a member of the rice (Oryza sativa) nitrate transporter 1/peptide transporter family, is involved in regulating N utilization and flowering, providing a target to produce high yield and early maturation simultaneously. OsNRT.1A has functionally diverged from previously reported NRT1.1 genes in plants and functions in upregulating the expression of N utilization-related genes not only for nitrate but also for ammonium, as well as flowering-related genes. Relative to the wild type, osnrt1.1a mutants exhibited reduced N utilization and late flowering. By contrast, overexpression of OsNRT1.1A in rice greatly improved N utilization and grain yield, and maturation time was also significantly shortened. These effects were further confirmed in different rice backgrounds and also in Arabidopsis thaliana Our study paves a path for the use of a single gene to dramatically increase yield and shorten maturation time for crops, outcomes that promise to substantially increase world food security.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Transportadores de Nitrato , Nitrógeno/metabolismo , Oryza/genética , Proteínas de Plantas/genética
3.
Mol Plant ; 14(3): 517-529, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316467

RESUMEN

The coordinated utilization of nitrogen (N) and phosphorus (P) is vital for plants to maintain nutrient balance and achieve optimal growth. Previously, we revealed a mechanism by which nitrate induces genes for phosphate utilization; this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4, which in turn promotes cytoplasmic-nuclear shuttling of PHR2, the central transcription factor of phosphate signaling, and triggers the nitrate-induced phosphate response (NIPR) and N-P coordinated utilization in rice. In this study, we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1 (HINGE1, also known as RLI1), a MYB-transcription factor closely related to PHR2. RLI1/HINGE1, which is transcriptionally activated by PHR2 under nitrate induction, can directly activate the expression of phosphate starvation-induced genes. More importantly, RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus (SPX proteins), and consequently releases PHR2 to further enhance phosphate response. Therefore, RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade, thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo
4.
Nat Plants ; 5(4): 401-413, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911122

RESUMEN

To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B-SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Nitratos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA