Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol ; 185(4): 1860-1874, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33595056

RESUMEN

The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiología , Proteínas de Transporte de Catión/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Mutación
2.
J Biol Chem ; 291(20): 10759-71, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26969163

RESUMEN

Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Almidón Sintasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brachypodium/enzimología , Brachypodium/genética , Secuencia Conservada , Fibrilinas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Almidón/biosíntesis , Almidón Sintasa/química , Almidón Sintasa/genética , Tilacoides/enzimología
3.
Proc Natl Acad Sci U S A ; 111(42): E4532-41, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288725

RESUMEN

Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Homeostasis , Proteínas Serina-Treonina Quinasas/química , Estrés Fisiológico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Proteínas Quinasas Dependientes de AMP Cíclico/química , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Transporte Iónico , Litio/química , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Sodio/química
4.
Plant Physiol ; 169(4): 2863-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26474642

RESUMEN

Plant growth and development requires efficient acquisition of essential elements. Potassium (K(+)) is an important macronutrient present in the soil solution at a wide range of concentrations. Regulation of the K(+) uptake systems in the roots is essential to secure K(+) supply. It has been shown in Arabidopsis (Arabidopsis thaliana) that when the external K(+) concentration is very low (<10 µm), K(+) nutrition depends exclusively on the high-affinity K(+) transporter5 (HAK5). Low-K(+)-induced transcriptional activation of the gene encoding HAK5 has been previously reported. Here, we show the posttranscriptional regulation of HAK5 transport activity by phosphorylation. Expression in a heterologous system showed that the Ca(2+) sensors calcineurin B-like (CBL1), CBL8, CBL9, and CBL10, together with CBL-interacting protein kinase23 (CIPK23), activated HAK5 in vivo. This activation produced an increase in the affinity and the Vmax of K(+) transport. In vitro experiments show that the N terminus of HAK5 is phosphorylated by CIPK23. This supports the idea that phosphorylation of HAK5 induces a conformational change that increases its affinity for K(+). Experiments of K(+) (Rb(+)) uptake and growth measurements in low-K(+) medium with Arabidopsis single mutants hak5, akt1, and cipk23, double mutants hak5 akt1, hak5 cipk23, and akt1 cipk23, and the triple mutant hak5 akt1 cipk23 confirmed the regulatory role of CIPK23 in planta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Competitiva , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Transporte Iónico , Cinética , Mutación , Fosforilación , Raíces de Plantas/genética , Antiportadores de Potasio-Hidrógeno/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Rubidio/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
Plant J ; 80(2): 305-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25088399

RESUMEN

Starch synthesis requires the formation of a primer that can be subsequently elongated and branched. How this primer is produced, however, remains unknown. The control of the number of starch granules produced per chloroplast is also a matter of debate. We previously showed starch synthase 4 (SS4) to be involved in both processes, although the mechanisms involved are yet to be fully characterised. The present work shows that SS4 displays a specific localization different from other starch synthases. Thus, this protein is located in specific areas of the thylakoid membrane and interacts with the proteins fibrillin 1a (FBN1a) and 1b (FBN1b), which are mainly located in plastoglobules. SS4 would seem to be associated with plastoglobules attached to the thylakoids (or to that portion of the thylakoids where plastoglobules have originated), forming a complex that includes the FBN1s and other as-yet unidentified proteins. The present results also indicate that the localization pattern of SS4, and its interactions with the FBN1 proteins, are mediated through its N-terminal region, which contains two long coiled-coil motifs. The localization of SS4 in specific areas of the thylakoid membrane suggests that starch granules are originated at specific regions of the chloroplast.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Almidón Sintasa/metabolismo , Tilacoides/enzimología , Arabidopsis/enzimología , Cloroplastos/enzimología , Unión Proteica , Técnicas del Sistema de Dos Híbridos
6.
Plant Physiol ; 163(1): 75-85, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872660

RESUMEN

STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.


Asunto(s)
Adenosina Difosfato Glucosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Almidón/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mutación , Estrés Oxidativo , Fosforilación , Fotosíntesis , Almidón Sintasa/genética , Almidón Sintasa/metabolismo
7.
Dev Cell ; 57(17): 2081-2094.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007523

RESUMEN

Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Estrés Salino , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
8.
Plant Biotechnol J ; 9(9): 1049-60, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21645200

RESUMEN

Starch is an important renewable raw material with an increasing number of applications. Several attempts have been made to obtain plants that produce modified versions of starch or higher starch yield. Most of the approaches designed to increase the levels of starch have focused on the increment of the amount of ADP-glucose or ATP available for starch biosynthesis. In this work, we show that the overexpression of starch synthase class IV (SSIV) increases the levels of starch accumulated in the leaves of Arabidopsis by 30%-40%. In addition, SSIV-overexpressing lines display a higher rate of growth. The increase in starch content as a consequence of enhanced SSIV expression is also observed in long-term storage starch organs such as potato tubers. Overexpression of SSIV in potato leads to increased tuber starch content on a dry weight basis and to increased yield of starch production in terms of tons of starch/hectare. These results identify SSIV as one of the regulatory steps involved in the control of the amount of starch accumulated in plastids.


Asunto(s)
Arabidopsis/enzimología , Proteínas de Almacenamiento de Semillas/metabolismo , Almidón Sintasa/metabolismo , Almidón/metabolismo , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Metabolismo de los Hidratos de Carbono , Clonación Molecular , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Pleiotropía Genética , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plastidios/genética , Plastidios/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Almidón Sintasa/genética , Factores de Tiempo
9.
J Exp Bot ; 62(13): 4547-59, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21624979

RESUMEN

This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.


Asunto(s)
Amilopectina/química , Amilopectina/metabolismo , Arabidopsis/enzimología , Hojas de la Planta/metabolismo , Almidón Sintasa/metabolismo , Amilopectina/ultraestructura , Amilosa/metabolismo , Fraccionamiento Químico , Cromatografía en Gel , Mutación/genética , Extractos Vegetales/metabolismo , Solubilidad
10.
Front Plant Sci ; 10: 281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949187

RESUMEN

Modern agriculture relies on mineral fertilization. Unlike other major macronutrients, potassium (K+) is not incorporated into organic matter but remains as soluble ion in the cell sap contributing up to 10% of the dry organic matter. Consequently, K+ constitutes a chief osmoticum to drive cellular expansion and organ movements, such as stomata aperture. Moreover, K+ transport is critical for the control of cytoplasmic and luminal pH in endosomes, regulation of membrane potential, and enzyme activity. Not surprisingly, plants have evolved a large ensemble of K+ transporters with defined functions in nutrient uptake by roots, storage in vacuoles, and ion translocation between tissues and organs. This review describes critical transport proteins governing K+ nutrition, their regulation, and coordinated activity, and summarizes our current understanding of signaling pathways activated by K+ starvation.

11.
Plant Cell ; 21(8): 2443-57, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19666739

RESUMEN

The mechanisms underlying starch granule initiation remain unknown. We have recently reported that mutation of soluble starch synthase IV (SSIV) in Arabidopsis thaliana results in restriction of the number of starch granules to a single, large, particle per plastid, thereby defining an important component of the starch priming machinery. In this work, we provide further evidence for the function of SSIV in the priming process of starch granule formation and show that SSIV is necessary and sufficient to establish the correct number of starch granules observed in wild-type chloroplasts. The role of SSIV in granule seeding can be replaced, in part, by the phylogenetically related SSIII. Indeed, the simultaneous elimination of both proteins prevents Arabidopsis from synthesizing starch, thus demonstrating that other starch synthases cannot support starch synthesis despite remaining enzymatically active. Herein, we describe the substrate specificity and kinetic properties of SSIV and its subchloroplastic localization in specific regions associated with the edges of starch granules. The data presented in this work point to a complex mechanism for starch granule formation and to the different abilities of SSIV and SSIII to support this process in Arabidopsis leaves.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plastidios/metabolismo , Almidón Sintasa/fisiología , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Microscopía Confocal , Microscopía Electrónica de Transmisión , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/ultraestructura , Plastidios/genética , Plastidios/ultraestructura , Almidón Sintasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA