Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Transgenic Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922381

RESUMEN

Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.

2.
BMC Med ; 21(1): 36, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726141

RESUMEN

BACKGROUND: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches. METHODS: The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus. RESULTS: After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans. CONCLUSIONS: Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Vacunas Virales , Humanos , Animales , Fiebre Hemorrágica de Crimea/prevención & control , Fiebre Hemorrágica de Crimea/epidemiología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Brotes de Enfermedades/prevención & control , Vacunación
3.
Curr Ther Res Clin Exp ; 95: 100636, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367384

RESUMEN

BACKGROUND: In Southeast Asia, Gynura procumbens has been utilized as a traditional medicinal herb for many diseases. The nontoxic effects of the leaves of G procumbens can be consumed safely for the treatment of many diseases, especially diabetes mellitus. OBJECTIVES: This study aimed to assess the antibacterial, anti-inflammatory, and cytotoxic effects of G procumbens leaves through different extracts. METHODS: Cold extraction was employed for G procumbens leaves. Disc diffusion, bovine serum albumin denaturation, brine shrimp lethality assays, and microscopic examination of tissues (ie, liver, kidney, and heart) were performed to measure antibacterial, anti-inflammatory, and cytotoxic activities, and histopathologic analysis, respectively. RESULTS: The distinct concentrations of aqueous, ethanol, and n-hexane extracts showed prominent antibacterial activity against four pathogenic bacterial strains (Chromobacterium sp, Staphylococcus aureus, Enterococcus faecium, and Escherichia coli 0157:H7:LT). The aqueous extract of G procumbens at a concentration of 200 µg/mL showed potential antibacterial activities against S aureus and E faecium, with mean (SD) zones of inhibition of 15 (1.0) mm and 10 (0.55) mm, respectively. At a concentration of 40 µg/mL, the aqueous extract of G procumbens exhibited significant (P < 0.01) anti-inflammatory activity compared with that of the other 2 extracts in the bovine serum albumin denaturation assay. The n-hexane extract showed moderate cytotoxic activity compared with that of vincristine sulfate. The median lethal concentration values of the aqueous, ethanol, and n-hexane extracts were 427.66, 218.56, and 114.51 µg/mL, respectively. The aqueous extract exhibited lower cytotoxicity than that exhibited by the ethanol and n-hexane extracts. The histopathologic analysis results showed that the aqueous extract of G procumbens had no harmful effects on the different organs of the experimental mice. CONCLUSIONS: The aqueous extract of G procumbens could be a potential source for treating various infectious and chronic diseases. (Curr Ther Res Clin Exp. 2021; 82:XXX-XXX).

4.
Neurobiol Dis ; 136: 104706, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837423

RESUMEN

The main pathological hallmark of Parkinson's disease (PD) is the presence of Lewy bodies, which mainly consist of aggregated α-synuclein. Based on the neurotoxicity of oligomeric α-synuclein and its significance in the aetiology of PD, there has been decades of effort to elucidate an enzyme specifically degrading oligomeric α-synuclein. Here we report an enzyme, Omi, which specifically recognizes and precisely degrades oligomeric α-synuclein but not monomeric α-synuclein. After enzymatic and functional analyses of Omi in in vitro, we developed an in vivo assay system of dual gene interaction in Drosophila to investigate further the etiological role of Omi in PD. Pan-neuronal expression of Omi rescued Parkinsonism in a Drosophila model of PD, while Knockout of Omi exacerbated Parkinsonism. Expression of Omi counteracted the α-synuclein-induced retinal degeneration, providing additional evidence for Omi's protective role oligomeric α-synuclein. This work reports identification of the catabolic pathway of oligomeric α-synuclein as well as showing how Omi functions as the key molecule in the recognition and degradation of toxic oligomeric α-synuclein, a possible cause of neurodegeneration in PD, without affecting monomeric α-synuclein which is a native essential molecule for the normal function of neurons.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Serina Peptidasa A2 que Requiere Temperaturas Altas/biosíntesis , Neuroprotección/fisiología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/prevención & control , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Parkinsonianos/genética
5.
RSC Adv ; 14(9): 6096-6111, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38370460

RESUMEN

Christella dentata (Forssk.) Brownsey & Jermy has been commonly used in traditional medicinal practices but its effects on multi-drug-resistant (MDR) bacteria have remained unexplored. We aimed to assess the in vitro antibacterial potential of the ethanol extract of Christella dentata (EECD) against MDR Pseudomonas aeruginosa and to identify potential multi-targeting antibacterial phytocompounds through computer-aided drug design focusing on the LasR and LpxC proteins. PPS, FT-IR and GC-MS were used for profiling of the phytocompounds in EECD. The antimicrobial activity of EECD was assessed using in vitro agar well diffusion, disc diffusion, MIC and MBC. Computer-aided drug design was used to identify multi-targeting leads from GC-MS-annotated phytocompounds. EECD exhibited dose-dependent antibacterial activity and revealed the presence of 51 phytocompounds in GC-MS analysis. Among these, three phytocompounds; (2E,4E)-N-isobutylhexadeca-2,4-dienamide (CID 6442402), bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- (CID 536446) and 1,4-diethylbenzene (CID 7734) were identified as promising antibacterial phytocompounds as they strongly bonded with LasR and LpxC. Of them, CID 536446 and CID 7734 exhibited multiple targeting abilities with LasR and LpxC. On further screening, both CID 536446 and CID 7734 exhibited favorable drug-able, pharmacokinetics and toxicity properties. Finally, molecular dynamics (MD) simulation proved the binding stability of bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene to active pockets of LasR and LpxC. The results of this study offer scientific validation for the traditional use of Christella dentata in bacterial infection-related diseases. It also suggests that bicyclo[4.3.0]nonane, 2,2,6,7-tetramethyl-7-hydroxy- and 1,4-diethylbenzene from Christella dentata might be responsible for the antibacterial activity and could act as phytopharmacological leads for the development of LasR and LpxC inhibitors against MDR P. aeruginosa.

6.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385482

RESUMEN

The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.Communicated by Ramaswamy H. Sarma.

7.
Heliyon ; 9(1): e12855, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36747926

RESUMEN

Senna tora (L.) Roxb. is an ethno-medicinal herb used by rural and tribal people of the Satpura region of Madhya Pradesh in India and the Phatthalung Province of Thailand for treating rheumatism, bronchitis, ringworm, itches, leprosy, dyspepsia, liver disorders and heart disorders. It is also used in Chinese and Ayurvedic medicine. This study was conducted to investigate the potential of Senna tora (L.) Roxb. as a source of drug candidates against oxidants, inflammation, and bacterial infection. Preliminary phytochemical screening (PPS) and GC-MS were performed to identify the phytochemicals in the ethyl acetate extract of Senna tora (L.) Roxb. leaves (EAESTL). The in vitro antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and H2O2-scavenging tests; the in vitro anti-inflammatory activity was determined by bovine serum albumin (BSA) denaturation and red blood cell (RBC) hemolysis inhibition; and the antibacterial activity was evaluated by agar-well diffusion methods. Cytotoxicity was estimated by Artemia salina larvae lethality, while acute toxicity was evaluated by oral delivery of the extract to mice. In silico antioxidant, anti-inflammatory, and antibacterial activities were predicted by the Prediction of Activity Spectra for Substances (PASS) program. The pharmacokinetics related to ADME and toxicity tests were determined by the admetSAR2 and ADMETlab2 web servers, and drug-able properties were assessed by the SwissADME server. GC-MS detected fifty-nine phytochemicals that support the types of compounds (phenols, flavonoids, tannins, terpenoids, saponins, steroids, alkaloids, glycosides and reducing sugar) identified by phytochemical screening. EAESTL exhibited dose-dependent antioxidant, anti-inflammatory, and antibacterial activities without any adverse effects or fluctuations in body weight. The PASS program predicted that the identified phytochemicals have antioxidant, anti-inflammatory and antibacterial activities. Among 51 phytochemicals, 16 showed good ADME, and 8 fulfilled drug-able properties without toxicity. Altogether, four phytochemicals, viz., benzyl alcohol, 3-(hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one, phenylethyl alcohol and 2,6,6-trimethylbicyclo [3.1.1] heptane-3-ol, showed good pharmacokinetics and drug-able properties without toxicity, along with antioxidant, anti-inflammatory, and antibacterial activities. The obtained results suggest that Senna tora (L.) Roxb. leaves contain bioactive phytochemicals that have the potential to fight against oxidants, inflammation, and bacterial infection as potential drug candidates.

8.
RSC Adv ; 13(41): 28773-28784, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37790109

RESUMEN

Cassia occidentalis L. is widely used in indigenous and traditional medicine, but its impact on multi-drug resistant (MDR) bacterial infections mostly remains unknown. Therefore, this study aimed to evaluate the in vitro antibacterial efficiency of methanol and ethyl acetate extracts of C. occidentalis L. leaves (MECOL and EAECOL) against multi-drug resistant Pseudomonas aeruginosa and to identify potential antibacterial agents through computational studies targeting the LasR protein. Initially, 82 compounds were identified using GC-MS analysis, and the functional groups were determined through FT-IR analysis. Both extracts of the plant exhibited dose-dependent antibacterial activity, with MICs of 104.16 ± 36.08 µg mL-1 for MECOL and 83.33 ± 36.08 µg mL-1 for EAECOL, and an MBC of 125 µg mL-1. Among the 82 compounds, 12 potential compounds were identified based on binding scores using molecular docking with the LasR protein and MM-GBSA analysis. Furthermore, screening for ADME properties, including physicochemical features, water solubility, lipophilicity, RO5 compliance, and toxicity, identified the top three compounds: methyl dihydrojasmonate, methyl benzoate, and 4a-methyl-4,4a,5,6,7,8-hexahydro-2(3H)-naphthalenone, which also demonstrated binding affinity with the active site residues of the LpxC protein of the bacteria. Additionally, molecular dynamics (MD) simulations confirmed the binding reliability of these three phytochemicals to LasR's active pocket, comparable to the protein native inhibitory ligands (C12-HSL). The study offers scientific support for the traditional use of C. occidentalis in treating bacterial infections, highlighting the potential of the three compounds as leads for developing LasR inhibitors to combat multi-drug resistant P. aeruginosa.

9.
Mol Neurobiol ; 59(3): 1819-1835, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35028900

RESUMEN

Loss of tubulin is associated with neurodegeneration and brain aging. Turmeric (Curcuma longa L.) has frequently been employed as a spice in curry and traditional medications in the Indian subcontinent to attain longevity and better cognitive performance. We aimed to evaluate the unelucidated mechanism of how turmeric protects the brain to be an anti-aging agent. D. melanogaster was cultured on a regular diet and turmeric-supplemented diet. ß-tubulin level and physiological traits including survivability, locomotor activity, fertility, tolerance to oxidative stress, and eye health were analyzed. Turmeric showed a hormetic effect, and 0.5% turmeric was the optimal dose in preventing aging. ß-tubulin protein level was decreased in the brain of D. melanogaster upon aging, while a 0.5% turmeric-supplemented diet predominantly prevented this aging-induced loss of ß-tubulin and degeneration of physiological traits as well as improved ß-tubulin synthesis in the brain of D. melanogaster early to mid-age. The higher concentration (≥ 1%) of turmeric-supplemented diet decreased the ß-tubulin level and degenerated many of the physiological traits of D. melanogaster. The turmeric concentration-dependent increase and decrease of ß-tubulin level were consistent with the increment and decrement data obtained from the evaluated physiological traits. This correlation demonstrated that turmeric targets ß-tubulin and has both beneficial and detrimental effects that depend on the concentration of turmeric. The findings of this study concluded that an optimal dosage of turmeric could maintain a healthy neuron and thus healthy aging, by preventing the loss and increasing the level of ß-tubulin in the brain.


Asunto(s)
Curcuma , Envejecimiento Saludable , Animales , Encéfalo , Drosophila melanogaster , Extractos Vegetales/farmacología , Tubulina (Proteína)
10.
RSC Adv ; 11(63): 40120-40135, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-35494115

RESUMEN

SARS-CoV-2 is an etiologic agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. The virus has rapidly extended globally and taken millions of lives due to the unavailability of therapeutics candidates against the virus. Till now, no specific drug candidates have been developed that can prevent or treat infections caused by the pathogen. The main protease (Mpro) of the SARS-CoV-2 plays a pivotal role in mediating viral replication and mechanistically inhibition of the protein can hinder the replication and infection process of the virus. Therefore, the study aimed to identify the natural bioactive compounds against the virus that can block the activity of the Mpro and subsequently block viral infections. Initially, a total of 96 phytochemicals from Ruellia prostrata Poir. and Senna tora (L.) Roxb. plants were identified through the gas chromatography-mass spectrometry (GC-MS) analytical method. Subsequently, the compounds were screened through molecular docking, absorption, distribution, metabolism, excretion (ADME), toxicity (T), and molecular dynamics (MD) simulation approach. The molecular docking method initially identified four molecules having a PubChem CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 with a binding affinity ranging between -6.067 to -6.53 kcal mol-1 to the active site of the target protein. All the selected compounds exhibit good pharmacokinetics and toxicity properties. Finally, the four compounds were further evaluated based on the MD simulation methods that confirmed the binding stability of the compounds to the targeted protein. The computational approaches identified the best four compounds CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 that can be developed as a treatment option of SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.

11.
AMB Express ; 5: 22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859422

RESUMEN

As a byproduct of oil production, black and yellow mustard cakes protein are considered as potential source of plant protein for feed applications to poultry, fish and swine industries. The protein contents in black and yellow mustard cakes were 38.17% and 28.80% and their pepsin digestibility was 80.33% and 77.43%, respectively. The proteins were extracted at different pH and maximum proteins (89.13% of 38.17% and 87.76% of 28.80% respectively) isolated from black and yellow mustard cakes at pH 12. The purity of isolated proteins of black and yellow mustard cakes was 89.83% and 91.12% respectively and their pepsin digestibility was 89.67% and 90.17% respectively which assigned the absence of antinutritional compounds. It was found that essential amino acids isoleucine, lysine, methionine, threonine and tryptophan and non essential amino acids arginine and tyrosine were present in greater concentration in black mustard cake protein whereas other amino acids were higher in yellow mustard cake protein.

12.
Protein Cell ; 4(3): 220-30, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23483483

RESUMEN

Recent advances in hematopoietic stem cells (HSCs) expansion by growth factors including angiopoietin-like proteins (Angptls) have opened up the possibility to use HSCs in regenerative medicine. However, the unavailability of true in vitro HSCs expansion by these growth factors has limited the understanding of the cellular and molecular mechanism of HSCs expansion. Here, we report the functional role of mouse Angptls 1, 2, 3, 4, 6 and 7 and growth factors SCF, TPO, IGF-2 and FGF-1 on purified mouse bone-marrow (BM) Lineage(-)Sca-1(+)(Lin-Sca-1(+)) HSCs. The recombinant retroviral transduced-CHO-S cells that secrete Angptls in serum-free medium were used alone or in combination with growth factors (SCF, TPO, IGF-2 and FGF-1). None of the Angptls stimulated HSC proliferation, enhanced or inhibited HSCs colony formation, but they did support the survival of HSCs. By contrast, any of the six Angptls together with saturating levels of growth factors dramatically stimulated a 3- to 4.5-fold net expansion of HSCs compared to stimulation with a combination of those growth factors alone. These findings lead to an understanding of the basic function of Angptls on signaling pathways for the survival as well as expansion of HSCs in the bone marrow niche.


Asunto(s)
Angiopoyetinas/metabolismo , Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Proteína 1 Similar a la Angiopoyetina , Proteína 2 Similar a la Angiopoyetina , Proteína 3 Similar a la Angiopoyetina , Proteína 4 Similar a la Angiopoyetina , Proteína 6 similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/genética , Animales , Antígenos Ly/metabolismo , Células CHO , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Cricetulus , Medios de Cultivo Condicionados/farmacología , Células Madre Hematopoyéticas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de la Membrana/metabolismo , Ratones , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA