Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 62(6): 1198-1205, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38232092

RESUMEN

OBJECTIVES: Thymic epithelial tumors (TET) patients are at high risk of autoimmune and hypoimmune complications. Limited evidence is available on the potential risk of immune-related and inflammatory reactions induced by SARS-Cov-2 vaccine in this patient population. METHODS: In order to identify subjects at higher risk for vaccine complications, we prospectively evaluated a panel of serum biomarkers related to inflammation (TNF-α, IL-1ß, -6, -10, -12, and -17A, IFN-α, ß and γ, MPO, MMP-9), and vascular damage (E- and P-selectin, VEGF-A, P-ANCA and MCP-1) in 44 TET patients and in 30 healthy controls along the whole SARS-Cov-2 vaccine cycle. RESULTS: About 50 % of subjects (either TET and controls) showed an increase of serum biochemical markers of inflammation and endothelial damage with a large heterogeneity of values. Such increase appeared early, after the first dose in control subjects and later, after the second dose in TET patients (in which we observed mainly an increase of inflammatory biomarkers). The values normalized after about 3 months and did not increase after the third, booster dose. No autoimmune or vascular complications were observed in the study subjects and no difference was observed in terms of vaccine response among subjects showing serum biomarkers increase and those who experienced no changes. CONCLUSIONS: Our data highlight the relevance of Sars-Cov-2 vaccine in TET patients, as it resulted safe and prevented severe COVID-19. However, further studies are awaited to explore the mechanisms and the potential consequences of the observed increase of serum inflammatory and vascular damage biomarkers.


Asunto(s)
Biomarcadores , Vacunas contra la COVID-19 , COVID-19 , Inflamación , Neoplasias del Timo , Humanos , Masculino , Persona de Mediana Edad , Femenino , Biomarcadores/sangre , Inflamación/sangre , Anciano , Neoplasias del Timo/sangre , Neoplasias del Timo/inmunología , Vacunas contra la COVID-19/efectos adversos , COVID-19/sangre , COVID-19/prevención & control , Adulto , Neoplasias Glandulares y Epiteliales/sangre , SARS-CoV-2/inmunología , Estudios Prospectivos , Vacunas de ARNm
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069054

RESUMEN

Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.


Asunto(s)
Antioxidantes , Ácido Clorogénico , Humanos , Antioxidantes/farmacología , Ácido Clorogénico/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Superóxidos , Enfermedades Neuroinflamatorias , Oxidasas Duales , Antiinflamatorios/farmacología , Polifenoles/farmacología , Oligodendroglía
3.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35981137

RESUMEN

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Humanos , Activación de Linfocitos , MicroARNs/genética , MicroARNs/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
4.
J Transl Med ; 19(1): 403, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556132

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) pandemic had a 1st wave in Europe from March to May 2020 and a 2nd wave since September 2020. We previously studied 35 hospitalized COVID-19 patients of the 1st wave demonstrating a cytokine storm and the exhaustion of most lymphocyte subpopulations. Herein, we describe the results obtained from COVID-19 patients of the 2nd wave. METHODS: We analyzed interleukin (IL)-6 by human-specific enzyme-linked immunosorbent assay and a large set of lymphocyte subpopulations by flow cytometry in 274 COVID-19 patients hospitalized from September 2020 to May 2021. RESULTS: Patients of 2nd wave compared with those of 1st wave showed lower serum IL-6 levels and a higher number of B and most T lymphocyte subpopulations in advanced stages, in relation with the age and the gender. On the other hand, we observed in 2nd wave patients: (i) a reduction of most lymphocyte subpopulations at mild and moderate stages; (ii) a reduction of natural killer cells and T regulatory cells together with a higher number of activated T helper (TH) 17 lymphocytes in all stages, which were mainly related to steroid and azithromycin therapies before hospitalization. CONCLUSIONS: COVID-19 had a less severe impact in patients of the 2nd wave in advanced stages, while the impact appeared more severe in patients of mild and moderate stages, as compared with 1st wave patients. This finding suggests that in COVID-19 patients with milder expression at diagnosis, steroid and azithromycin therapies appear to worsen the immune response against the virus. Furthermore, the cytometric profile may help to drive targeted therapies by monoclonal antibodies to modulate specific IL/lymphocyte inhibition or activation in COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , Células Asesinas Naturales , Recuento de Linfocitos , Pandemias , SARS-CoV-2
5.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924850

RESUMEN

The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera's aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Línea Celular Tumoral , Factor 2 de Crecimiento de Fibroblastos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Translocación Genética
6.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807720

RESUMEN

Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs' development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.


Asunto(s)
Mitocondrias/metabolismo , Oligodendroglía/metabolismo , Serotonina/farmacología , Células Madre/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Proteína Básica de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281225

RESUMEN

Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the ß3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.


Asunto(s)
Células Musculares/fisiología , Músculo Esquelético/fisiología , Hormonas Tiroideas/fisiología , Animales , Diferenciación Celular , Integrina beta3/fisiología , Yoduro Peroxidasa/fisiología , Ratones , Músculo Esquelético/citología , Yodotironina Deyodinasa Tipo II
8.
Ann Hematol ; 98(5): 1083-1093, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868306

RESUMEN

In this study, we aimed at disclosing the main features of paroxysmal nocturnal hemoglobinuria (PNH) clones, their association with presentation syndromes, and their changes during follow-up. A large-scale, cooperative collection (583 clones from 529 patients) of flow cytometric and clinical data was entered into a national repository. Reason for testing guidelines were provided to the 41 participating laboratories, which followed the 2010 technical recommendations for PNH testing by Borowitz. Subsequently, the 30 second-level laboratories adopted the 2012 guidelines for high-resolution PNH testing, both upon order by the local clinicians and as an independent laboratory initiative in selected cases. Type3 and Type2 PNH clones (total and partial absence of glycosyl-phosphatidyl-inositol-anchor, respectively) were simultaneously present in 54 patients. In these patients, Type3 component was sevenfold larger than Type2 (p < 0.001). Frequency distribution analysis of solitary Type3 clone size (N = 442) evidenced two discrete patterns: small (20% of peripheral neutrophils) and large (> 70%) clones. The first pattern was significantly associated with bone marrow failure and myelodysplastic syndromes, the second one with hemolysis, hemoglobinuria, and thrombosis. Pediatric patients (N = 34) showed significant preponderance of small clones and bone marrow failure. The majority of PNH clones involved neutrophils, monocytes, and erythrocytes. Nevertheless, we found clones made exclusively by white cells (N = 13) or erythrocytes (N = 3). Rare cases showed clonal white cells restricted only to monocytes (6 cases) or neutrophils (3 cases). Retesting over 1-year follow-up in 151 cases showed a marked clone size increase in 4 cases and a decrease in 13, demonstrating that early breaking-down of PNH clones is not a rare event (8.6% of cases). This collaborative nationwide study demonstrates a clear-cut difference in size between Type2 and Type3 clones, emphasizes the existence of just two classes of PNH presentations based on Type3 clone size, depicts an asymmetric cellular composition of PNH clones, and documents the possible occurrence of changes in clone size during the follow-up.


Asunto(s)
Citometría de Flujo , Hemoglobinuria Paroxística/sangre , Hemoglobinuria Paroxística/patología , Factores de Edad , Femenino , Estudios de Seguimiento , Humanos , Italia , Masculino , Guías de Práctica Clínica como Asunto
9.
J Immunol ; 198(9): 3426-3435, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28341671

RESUMEN

Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14+ monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14+ CD16- monocytes, TSLPR+ monocytes (TSLPR+ mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR+ mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6, ALOX15B, FCGR2B, LAIR1). Strikingly, TSLPR+ mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14+ CD1c+ cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14+ CD16- monocytes and prompt further ontogenetic and functional analysis of CD14+ CD1c+ and LPS-activated CD14+ CD1c+ TSLPR+ mono.


Asunto(s)
Diferenciación Celular , Citocinas/metabolismo , Monocitos/inmunología , Receptores de Citocinas/metabolismo , Sepsis/inmunología , Antígenos CD1/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Células Cultivadas , Quimiocina CCL17/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Péptidos y Proteínas de Señalización Intercelular/genética , Interleucina-4/inmunología , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/inmunología , Receptores de Citocinas/genética , Receptores de IgG/genética , Receptores Inmunológicos/genética , Linfopoyetina del Estroma Tímico
10.
Eur J Pediatr ; 177(9): 1371-1375, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29353440

RESUMEN

The board game Kaledo was proven to be effective in improving nutrition knowledge and in modifying dietary behavior in students attending middle and high school. The present pilot study aims to reproduce these results in younger students (7-11 years old) attending primary school. A total of 1313 children from ten schools were recruited to participate in the present study. Participants were randomized into two groups: (1) the treatment group which consisted of playing Kaledo over 20 sessions and (2) the no intervention group. Anthropometric measures were carried out for both groups at baseline (prior to any treatment) and at two follow-up post-assessments (8 and 18 months). All the participants completed a questionnaire concerning physical activity and a 1-week food diary at each assessment. The primary outcomes were (i) BMI z-score, (ii) scores on physical activity, and (iii) scores on a dietary questionnaire. BMI z-score was significantly lower in the treated group compared to the control group at 8 months. Frequency and duration of self-reported physical activity were also significantly augmented in the treated group compared to the control group at both post-assessments. Moreover, a significant increase in the consumption of healthy food and a significant decrease in junk food intake were observed in the treated group. CONCLUSION: The present results confirm the efficacy of Kaledo in younger students in primary schools, and it can be used as a useful nutritional tool for obesity prevention programs in children. What is Known: • Kaledo is a new educational board game to improve nutrition knowledge and to promote a healthy lifestyle. • In two cluster randomized trials conducted in Campania region (Italy), we showed that Kaledo could improve nutrition knowledge and dietary behavior and have a positive effect on the BMI z-score in children with age ranging from 9 to 14 years old attending school. • Kaledo may be used as an effective tool for obesity prevention programs in middle and high school students. What is New: • Investigating the effects of Kaledo on younger primary school children (7-11 year olds), Kaledo could be an effective tool in obesity prevention programs for children as young as 7 years old.


Asunto(s)
Ejercicio Físico/fisiología , Juegos Recreacionales , Promoción de la Salud/métodos , Estilo de Vida Saludable , Obesidad Infantil/prevención & control , Antropometría , Niño , Ingestión de Alimentos , Femenino , Conductas Relacionadas con la Salud/fisiología , Humanos , Masculino , Proyectos Piloto , Servicios de Salud Escolar , Instituciones Académicas , Estudiantes , Encuestas y Cuestionarios
11.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428564

RESUMEN

Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids ß-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.


Asunto(s)
Metilmalonil-CoA Mutasa/genética , Neuroblastoma/metabolismo , Proteómica/métodos , Apoptosis/genética , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Biología Computacional , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Citometría de Flujo , Humanos , Cetosis/genética , Cetosis/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuroblastoma/genética , ARN Interferente Pequeño/genética
12.
Epidemiol Prev ; 42(5-6): 333-343, 2018.
Artículo en Italiano | MEDLINE | ID: mdl-30370735

RESUMEN

BACKGROUND: recently, healthcare network models have been proposed to improve general awareness of rare diseases for patients and specific knowledge about diagnosis, treatment, and management for healthcare services. Paroxysmal nocturnal hemoglobinuria (PNH) is a rare haematological disease that still has no framing in an official network. OBJECTIVES: to describe the use of network models in diagnosis, treatment, and management of PNH patients both in Italy and abroad and its impact on patients and healthcare service. DISEGN: literature search was performed using the keywords "Hemoglobinuria", "Network", "PHN", and "Screening" in both MedLine and EMBASE. Search was restricted to the articles published in the last 5 years and written in English, French or Italian language. RESULTS: from the total 251 articles of the initial search, only 21 were finally included in our review. None of the included study explicitly described a network model. In general, we were able to identify two different kind of networks implicitly described in the studies: laboratory networks for diagnostic harmonization or screening of the population at risk of PNH (10/21 studies) and PNH registry as network of clinical information to be use for better understanding of the natural history of the disease and to assess therapeutic effectiveness (11/21 studies). CONCLUSIONS: few network approaches in PNH diagnosis, treatment, and management are described in literature. Despite the scarce application of the networks, our review highlights the positive impact that networks have in both patients and healthcare services.


Asunto(s)
Hemoglobinuria Paroxística/diagnóstico , Hemoglobinuria Paroxística/epidemiología , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Adulto , Humanos , Servicios de Información , Italia/epidemiología
13.
Carcinogenesis ; 38(10): 1011-1020, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968651

RESUMEN

Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos , Neuroblastoma/enzimología , Fosfotransferasas/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Macrólidos/farmacología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
14.
Blood ; 123(13): 2094-101, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24497537

RESUMEN

Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated intravascular hemolysis due to the lack of CD55 and CD59 on affected erythrocytes. The anti-C5 antibody eculizumab has proven clinically effective, but uncontrolled C3 activation due to CD55 absence may result in opsonization of erythrocytes, possibly leading to clinically meaningful extravascular hemolysis. We investigated the effect of the peptidic C3 inhibitor, compstatin Cp40, and its long-acting form (polyethylene glycol [PEG]-Cp40) on hemolysis and opsonization of PNH erythrocytes in an established in vitro system. Both compounds demonstrated dose-dependent inhibition of hemolysis with IC50 ∼4 µM and full inhibition at 6 µM. Protective levels of either Cp40 or PEG-Cp40 also efficiently prevented deposition of C3 fragments on PNH erythrocytes. We further explored the potential of both inhibitors for systemic administration and performed pharmacokinetic evaluation in nonhuman primates. A single intravenous injection of PEG-Cp40 resulted in a prolonged elimination half-life of >5 days but may potentially affect the plasma levels of C3. Despite faster elimination kinetics, saturating inhibitor concentration could be reached with unmodified Cp40 through repetitive subcutaneous administration. In conclusion, peptide inhibitors of C3 activation effectively prevent hemolysis and C3 opsonization of PNH erythrocytes, and are excellent, and potentially cost-effective, candidates for further clinical investigation.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complemento C3/antagonistas & inhibidores , Hemoglobinuria Paroxística/tratamiento farmacológico , Péptidos Cíclicos/uso terapéutico , Animales , Diseño de Fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Semivida , Hemoglobinuria Paroxística/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Macaca fascicularis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/uso terapéutico , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico
15.
Epigenomics ; 16(6): 359-374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440863

RESUMEN

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.


In this study, a protein called SMYD1 was examined in the adipose tissue of mice to understand its role in the development of different types of fat cells. The authors used mice fed a high-fat diet or mice exposed to a cold environment. The experiments were also performed on cultured cells that were stimulated to form specific types of fat cells (white adipocytes, which store energy; or beige adipocytes, which are responsible for releasing energy in the form of heat). The study found that SMYD1 increased in white adipose tissue particularly in response to cold exposure and high-fat diet, suggesting involvement in body temperature regulation. SMYD1 was higher in beige adipocytes than in white fat cells, and when SMYD1 was reduced, there was a decrease in certain factors related to energy control. Overall, these results suggest that SMYD1 plays a novel role in energy regulation in adipose tissues.


Asunto(s)
Tejido Adiposo , Termogénesis , Animales , Ratones , Células 3T3-L1 , Histona Metiltransferasas , Ratones Endogámicos C57BL , Termogénesis/genética
16.
Biomedicines ; 11(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761026

RESUMEN

Background: Non-Hodgkin's lymphoma (NHL), the most frequent hematological neoplasm worldwide, represents a heterogeneous group of malignancies. The etiology of NHL remains to be fully elucidated, but the role of adipose tissue (AT) in immune function via the secretion of adipokines was recently recognized. Among adipokines, adiponectin has garnered attention for its beneficial properties. This study aimed to explore the in vitro effects of AdipoRon, an adiponectin agonist, on JVM-2, a lymphoblast cell line used as a representative disease model. Methods: JVM-2 cells were treated with different concentrations of AdipoRon to evaluate its effects on viability (via an MTT test), cell cycle distribution (via an FACS analysis), invasiveness (via a Matrigel assay) and colony-forming ability; protein expression was assessed via a real-time PCR (qPCR) and/or Western blotting (WB). Results: We found that the prolonged exposure of JVM-2 cells to AdipoRon led to a reduction in their viability due to a cytostatic effect. Additionally, AdipoRon stimulated both the formation of cell colonies and the expression of E-cadherin. Interestingly, the administration of AdipoRon increased the invasive potential of JVM-2 cells. Conclusions: Our findings indicate that adiponectin is involved in the regulation of different cellular processes of JVM-2 cells, supporting its potential association with a pro-tumorigenic phenotype and indicating that it might contribute to the increased aggressiveness and metastatic potential of B lymphoma cells. However, additional studies are required to fully understand the molecular mechanisms of adiponectin's actions on lymphoblasts and whether it may represent a marker of disease.

17.
Endocr Relat Cancer ; 30(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877008

RESUMEN

Anaplastic thyroid cancer (ATC) is a rare thyroid tumor that frequently originates from the dedifferentiation of a well-differentiated papillary or follicular thyroid cancer. Type 2 deiodinase (D2), responsible for the activation of the thyroid hormone thyroxine into tri-iodothyronine (T3), is expressed in normal thyroid cells and its expression is strongly downregulated in papillary thyroid cancer. In skin cancer, D2 has been associated with cancer progression, dedifferentiation, and epithelial-mesenchymal transition. Here, we show that D2 is highly expressed in anaplastic compared to papillary thyroid cancer cell lines and that D2-derived T3 is required for ATC cell proliferation. D2 inhibition is associated with G1 growth arrest and induction of cell senescence, together with reduced cell migration and invasive potential. Finally, we found that mutated p5372R(R248W), frequently found in ATC, is able to induce D2 expression in transfected papillary thyroid cancer cells. Our results show that the action of D2 is crucial for ATC proliferation and invasiveness, providing a potential new therapeutic target for the treatment of ATC.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/metabolismo , Yoduro Peroxidasa/genética , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/patología , Senescencia Celular , Línea Celular Tumoral
19.
Front Immunol ; 14: 1233056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705978

RESUMEN

Background: Thymic epithelial tumors (TETs) are rare malignancies with heterogeneous clinical manifestations. The high frequency of autoimmune paraneoplastic disorders observed in such patients requires caution when using COVID-19 vaccines. Furthermore, TETs are often associated with severe immunodeficiency, making it difficult to predict vaccine immunization. Therefore, we aimed to evaluate immune response to COVID-19 vaccine in patients with TETs. Methods: We conducted a prospective study enrolling patients who underwent the SARS-Cov-2 mRNA full vaccine cycle (two doses plus a booster after 6 months of BNT162b2). All patients were enrolled before receiving 1st vaccine dose and were followed over the vaccination cycle for up to 6 months after the booster dose to i) assess humoral and cellular responses, ii) define biomarkers predictive of effective immunization, and iii) evaluate the safety of the vaccine. Results: At the end of the full vaccine cycle, 27 (61.4%) patients developed humoral and 38 (86.4%) cellular responses (IFN γ release by stimulated cells) and showed an increase in activated TH1 and TH17 cells, particularly significant after the booster dose. The number of B and T lymphocytes at baseline was predictive of humoral and cellular responses, respectively. Patients with no evidence of tumor lesions had a higher probability of achieving a humoral response than those with evidence of the disease. Furthermore, the percentage of patients with immune-related disorders (75%), particularly Good's syndrome (47.7%) and myasthenia gravis (29.5%), did not change over the entire vaccine cycle. Overall, 19 of the 44 enrolled patients (43.2%) had COVID-19 during the observation period; none required hospitalization or oxygen support, and no fatalities were observed. Conclusion: SARS-Cov-2 mRNA vaccine determines the immune responses in patients with TET, particularly after the booster dose, and in patients with no evidence of tumor lesions. Preliminary analysis of B and T lymphocytes may help identify patients who have a lower probability of achieving effective humoral and cellular responses and thus may need passive immunization. The vaccine prevented severe COVID-19 infection and is safe.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Neoplasias Glandulares y Epiteliales , Humanos , Vacunas contra la COVID-19/efectos adversos , Vacuna BNT162 , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Inmunidad
20.
Nat Commun ; 14(1): 1244, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871014

RESUMEN

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Asunto(s)
Yoduro Peroxidasa , Proteína p53 Supresora de Tumor , Daño del ADN , Ejercicio Físico , Terapia Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA