Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(32): e2300409, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37058137

RESUMEN

Remotely powered microrobots are proposed as next-generation vehicles for drug delivery. However, most microrobots swim with linear trajectories and lack the capacity to robustly adhere to soft tissues. This limits their ability to navigate complex biological environments and sustainably release drugs at target sites. In this work, bubble-based microrobots with complex geometries are shown to efficiently swim with non-linear trajectories in a mouse bladder, robustly pin to the epithelium, and slowly release therapeutic drugs. The asymmetric fins on the exterior bodies of the microrobots induce a rapid rotational component to their swimming motions of up to ≈150 body lengths per second. Due to their fast speeds and sharp fins, the microrobots can mechanically pin themselves to the bladder epithelium and endure shear stresses commensurate with urination. Dexamethasone, a small molecule drug used for inflammatory diseases, is encapsulated within the polymeric bodies of the microrobots. The sustained release of the drug is shown to temper inflammation in a manner that surpasses the performance of free drug controls. This system provides a potential strategy to use microrobots to efficiently navigate large volumes, pin at soft tissue boundaries, and release drugs over several days for a range of diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Epitelio , Robótica , Animales , Ratones , Microtecnología
2.
Soft Matter ; 19(5): 892-904, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648425

RESUMEN

Diffusiophoresis refers to the phenomenon where colloidal particles move in response to solute concentration gradients. Existing studies on diffusiophoresis, both experimental and theoretical, primarily focus on the movement of colloidal particles in response to one-dimensional solute gradients. In this work, we numerically investigate the impact of two-dimensional solute gradients on the distribution of colloidal particles, i.e., colloidal banding, induced via diffusiophoresis. The solute gradients are generated by spatially arranged sources and sinks that emit/absorb a time-dependent solute molar rate. First we study a dipole system, i.e., one source and one sink, and discover that interdipole diffusion and molar rate decay timescales dictate colloidal banding. At timescales shorter than the interdipole diffusion timescale, we observe a rapid enhancement in particle enrichment around the source due to repulsion from the sink. However, at timescales longer than the interdipole diffusion timescale, the source and sink screen each other, leading to a slower enhancement. If the solute molar rate decays at the timescale of interdipole diffusion, an optimal separation distance is obtained such that particle enrichment is maximized. We find that the partition coefficient of solute at the interface between the source and bulk strongly impacts the optimal separation distance. Surprisingly, the diffusivity ratio of solute in the source and bulk has a much weaker impact on the optimal dipole separation distance. We also examine an octupole configuration, i.e., four sinks and four sources, arranged in a circle, and demonstrate that the geometric arrangement that maximizes enrichment depends on the radius of the circle. If the radius of the circle is small, it is preferred to have sources and sinks arranged in an alternating fashion. However, if the radius of the circle is large, a consecutive arrangement of sources and sinks is optimal. Our numerical framework introduces a novel method for spatially and temporally designing the banded structure of colloidal particles in two dimensions using diffusiophoresis and opens up new avenues in a field that has primarily focused on one-dimensional solute gradients.

3.
ACS Nano ; 17(15): 14196-14204, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494584

RESUMEN

Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases.


Asunto(s)
Robótica , Humanos , Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Procedimientos Quirúrgicos Mínimamente Invasivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA