Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 62(6): 2672-2679, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36716284

RESUMEN

Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.

2.
Anal Bioanal Chem ; 415(18): 4209-4220, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37014373

RESUMEN

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone. Here, we present the simulation package developed alongside this prototype. The first part describes how the front-to-end ion trajectory simulations have been conducted. Highlighted is a quadrant lens; a simple but efficient device that steers the ion beam within the vicinity of the strong DC orientation field in the interaction zone to ensure spatial overlap with the X-rays. The second part focuses on protein orientation and discusses its potential with respect to diffractive imaging methods. Last, coherent diffractive imaging of prototypical T = 1 and T = 3 norovirus capsids is shown. We use realistic experimental parameters from the SPB/SFX instrument at the European XFEL to demonstrate that low-resolution diffractive imaging data (q < 0.3 nm-1) can be collected with only a few X-ray pulses. Such low-resolution data are sufficient to distinguish between both symmetries of the capsids, allowing to probe low abundant species in a beam if MS SPIDOC is used as sample delivery.


Asunto(s)
Cápside , Electrones , Simulación por Computador , Sincrotrones , Rayos X
3.
J Am Chem Soc ; 144(49): 22528-22539, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459680

RESUMEN

Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here, we apply ion mobility mass spectrometry coupled with density functional theory to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR'][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR']+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


Asunto(s)
Rotaxanos , Metales/química , Conformación Molecular , Cationes Bivalentes
4.
Phys Chem Chem Phys ; 22(17): 9438-9447, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32314750

RESUMEN

The liquid-liquid transition in supercooled liquid water, predicted to occur around 220 K, is controversial due to the difficulty of studying it caused by competition from ice crystallization (the so-called "no man's land"). In aqueous solutions, it has been predicted to give rise to phase separation on a nanometer scale between a solute-rich high-density phase and a water-rich low-density phase. Here we report direct experimental evidence for the formation of a nanosegregated phase in eutectic aqueous solutions of LiCl and LiSCN where the presence of crystalline water can be experimentally excluded. Femtosecond infrared and Raman spectroscopies are used to determine the temperature-dependent structuring of water, the solvation of the SCN- anion, and the size of the phase segregated domains.

5.
Chem Sci ; 12(24): 8333-8341, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34221314

RESUMEN

Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here - using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy - we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications.

6.
J Phys Chem B ; 121(6): 1295-1303, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28102674

RESUMEN

The induced fit binding model describes a conformational change occurring when a small molecule binds to its biomacromolecular target. The result is enhanced noncovalent interactions between the ligand and biomolecule. Induced fit is well-established for small molecule-protein interactions, but its relevance to small molecule-DNA binding is less clear. We investigate the molecular determinants of Hoechst33258 binding to its preferred A-tract sequence relative to a suboptimal alternating A-T sequence. Results from two-dimensional infrared spectroscopy, which is sensitive to H-bonding and molecular structure changes, show that Hoechst33258 binding results in loss of the minor groove spine of hydration in both sequences, but an additional perturbation of the base propeller twists occurs in the A-tract binding region. This induced fit maximizes favorable ligand-DNA enthalpic contributions in the optimal binding case and demonstrates that controlling the molecular details that induce subtle changes in DNA structure may hold the key to designing next-generation DNA-binding molecules.


Asunto(s)
Bisbenzimidazol/química , ADN/química , Sitios de Unión , Ligandos , Modelos Moleculares , Espectrofotometría Infrarroja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA