Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 11(6): 1460-9, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20481478

RESUMEN

A collagen-mimetic polymer that can be easily engineered with specific cell-responsive and mechanical properties would be of significant interest for fundamental cell-matrix studies and applications in regenerative medicine. However, oligonucleotide-based synthesis of full-length collagen has been encumbered by the characteristic glycine-X-Y sequence repetition, which promotes mismatched oligonucleotide hybridizations during de novo gene assembly. In this work, we report a novel, modular synthesis strategy that yields full-length human collagen III and specifically defined variants. We used a computational algorithm that applies codon degeneracy to design oligonucleotides that favor correct hybridizations while disrupting incorrect ones for gene synthesis. The resulting recombinant polymers were expressed in Saccharomyces cerevisiae engineered with prolyl-4-hydroxylase. Our modular approach enabled mixing-and-matching domains to fabricate different combinations of collagen variants that contained different secretion signals at the N-terminus and cysteine residues imbedded within the triple-helical domain at precisely defined locations. This work shows the flexibility of our strategy for designing and assembling specifically tailored biomimetic collagen polymers with re-engineered properties.


Asunto(s)
Materiales Biomiméticos/química , Colágeno Tipo III/genética , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Clonación Molecular , Colágeno Tipo III/química , Cisteína/química , Cisteína/genética , Humanos , Sondas de Oligonucleótidos/química , Sondas de Oligonucleótidos/genética , Plásmidos , Procolágeno-Prolina Dioxigenasa/genética , Proteínas Recombinantes/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
2.
NPJ Vaccines ; 2: 24, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29263879

RESUMEN

We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.

3.
J Biomater Appl ; 28(9): 1354-65, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24146435

RESUMEN

The ability to engineer bioactive sites within the biopolymer collagen has significant potential to dictate cellular microenvironments and processes. We have developed a novel recombinant DNA platform that enables such molecular-level control over this important material. In this investigation, we demonstrated the production of synthetic human collagen using yeast strains that were engineered with human prolyl hydroxylase α and ß genes integrated into the genome and a codon-optimized collagen gene carried on a plasmid. To understand the extent to which this synthetic collagen can mimic native human collagen, we examined the relationships between the structural topology and physical stability with the ability to support adhesion of HT-1080 cells. Characterization of these biopolymers included evaluation using circular dichroism spectroscopy, atomic force microscopy, and MTT metabolic activity assays. Although the apparent melting temperatures of the recombinant collagens were ∼3-5 less than native sources, the recombinant and native collagens exhibited comparable triple helical structure, polymeric dimensions, adsorption on polystyrene, and cellular adhesion properties below their respective melting temperature values. These results support the feasibility of producing molecularly-engineered collagens that can mimic native substrates for therapeutic and tissue engineering applications.


Asunto(s)
Biomimética , Adhesión Celular , Colágeno/metabolismo , Nanotecnología , Adsorción , Línea Celular Tumoral , Dicroismo Circular , Humanos , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA