Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 35(11): 2253-2266, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28869683

RESUMEN

Runt-related transcription factor 1 (Runx1) is a master hematopoietic transcription factor essential for hematopoietic stem cell (HSC) emergence. Runx1-deficient mice die during early embryogenesis due to the inability to establish definitive hematopoiesis. Here, we have used human pluripotent stem cells (hPSCs) as model to study the role of RUNX1 in human embryonic hematopoiesis. Although the three RUNX1 isoforms a, b, and c were induced in CD45+ hematopoietic cells, RUNX1c was the only isoform induced in hematoendothelial progenitors (HEPs)/hemogenic endothelium. Constitutive expression of RUNX1c in human embryonic stem cells enhanced the appearance of HEPs, including hemogenic (CD43+) HEPs and promoted subsequent differentiation into blood cells. Conversely, specific deletion of RUNX1c dramatically reduced the generation of hematopoietic cells from HEPs, indicating that RUNX1c is a master regulator of human hematopoietic development. Gene expression profiling of HEPs revealed a RUNX1c-induced proinflammatory molecular signature, supporting previous studies demonstrating proinflammatory signaling as a regulator of HSC emergence. Collectively, RUNX1c orchestrates hematopoietic specification of hPSCs, possibly in cooperation with proinflammatory signaling. Stem Cells 2017;35:2253-2266.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Ratones , Transducción de Señal
2.
Mol Ther ; 24(2): 342-353, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26502776

RESUMEN

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34(+)CD45(+) progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34(+)CD41(+) progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Megacariocitos/citología , Modelos Biológicos , Proteína del Síndrome de Wiskott-Aldrich/deficiencia , Antígenos CD34/metabolismo , Diferenciación Celular , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Antígenos Comunes de Leucocito/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
3.
Blood ; 124(20): 3065-75, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25185710

RESUMEN

The molecular determinants regulating the specification of human embryonic stem cells (hESCs) into hematopoietic cells remain elusive. HOXA9 plays a relevant role in leukemogenesis and hematopoiesis. It is highly expressed in hematopoietic stem and progenitor cells (HSPCs) and is downregulated upon differentiation. Hoxa9-deficient mice display impaired hematopoietic development, and deregulation of HOXA9 expression is frequently associated with acute leukemia. Analysis of the genes differentially expressed in cord blood HSPCs vs hESC-derived HSPCs identified HOXA9 as the most downregulated gene in hESC-derived HSPCs, suggesting that expression levels of HOXA9 may be crucial for hematopoietic differentiation of hESC. Here we show that during hematopoietic differentiation of hESCs, HOXA9 expression parallels hematopoietic development, but is restricted to the hemogenic precursors (HEP) (CD31(+)CD34(+)CD45(-)), and diminishes as HEPs differentiate into blood cells (CD45(+)). Different gain-of-function and loss-of-function studies reveal that HOXA9 enhances hematopoietic differentiation of hESCs by specifically promoting the commitment of HEPs into primitive and total CD45(+) blood cells. Gene expression analysis suggests that nuclear factor-κB signaling could be collaborating with HOXA9 to increase hematopoietic commitment. However, HOXA9 on its own is not sufficient to confer in vivo long-term engraftment potential to hESC-hematopoietic derivatives, reinforcing the idea that additional molecular regulators are needed for the generation of definitive in vivo functional HSPCs from hESC.


Asunto(s)
Células Madre Embrionarias/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/metabolismo , Animales , Línea Celular , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID
4.
Mol Ther ; 23(1): 158-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25292191

RESUMEN

Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Plaquetas/metabolismo , Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Megacariocitos/metabolismo , Proteínas Proto-Oncogénicas/genética , Trombopoyesis/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Diferenciación Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Plásmidos/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Trombopoyesis/efectos de los fármacos , Transcripción Genética , Ácido Valproico/farmacología , Vorinostat
5.
Blood ; 121(19): 3867-78, S1-3, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23479570

RESUMEN

Mixed-lineage leukemia (MLL)-AF4 fusion arises prenatally in high-risk infant acute pro-B-lymphoblastic leukemia (pro-B-ALL). In human embryonic stem cells (hESCs), MLL-AF4 skewed hematoendothelial specification but was insufficient for transformation, suggesting that additional oncogenic insults seem required for MLL-AF4-mediated transformation. MLL-AF4+ pro-B-ALL expresses enormous levels of FLT3, occasionally because of activating mutations, thus representing a candidate cooperating event in MLL-AF4+ pro-B-ALL. Here, we explored the developmental impact of FLT3 activation alone, or together with MLL-AF4, in the hematopoietic fate of hESCs. FLT3 activation does not affect specification of hemogenic precursors but significantly enhances the formation of CD45(+) blood cells, and CD45(+)CD34(+) blood progenitors with clonogenic potential. However, overexpression of FLT3 mutations or wild-type FLT3 (FLT3-WT) completely abrogates hematopoietic differentiation from MLL-AF4-expressing hESCs, indicating that FLT3 activation cooperates with MLL-AF4 to inhibit human embryonic hematopoiesis. Cell cycle/apoptosis analyses suggest that FLT3 activation directly affects hESC specification rather than proliferation or survival of hESC-emerging hematopoietic derivatives. Transcriptional profiling of hESC-derived CD45(+) cells supports the FLT3-mediated inhibition of hematopoiesis in MLL-AF4-expressing hESCs, which is associated with large transcriptional changes and downregulation of genes involved in hematopoietic system development and function. Importantly, FLT3 activation does not cooperate with MLL-AF4 to immortalize/transform hESC-derived hematopoietic cells, suggesting the need of alternative (epi)-genetic cooperating hits.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/fisiología , Hematopoyesis/genética , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Proteínas de Fusión Oncogénica/fisiología , Tirosina Quinasa 3 Similar a fms/fisiología , Animales , Linaje de la Célula/genética , Células Cultivadas , Células Madre Embrionarias/metabolismo , Activación Enzimática/fisiología , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Ratones , Ratones SCID , Análisis por Micromatrices , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
6.
Blood ; 121(9): 1543-52, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23293081

RESUMEN

Programs that control early lineage fate decisions and transitions from embryonic to adult human cell types during development are poorly understood. Using human pluripotent stem cells (hPSCs), in the present study, we reveal reduction of Hedgehog (Hh) signaling correlates to developmental progression of hematopoiesis throughout human ontogeny. Both chemical- and gene-targeting­mediated inactivation of Hh signaling augmented hematopoietic fate and initiated transitions from embryonic to adult hematopoiesis, as measured by globin regulation in hPSCs. Inhibition of the Hh pathway resulted in truncation of Gli3 to its repressor, Gli3R, and was shown to be necessary and sufficient for initiating this transition. Our results reveal an unprecedented role for Hh signaling in the regulation of adult hematopoietic specification, thereby demonstrating the ability to modulate the default embryonic programs of hPSCs.


Asunto(s)
Proteínas Hedgehog/genética , Hematopoyesis/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Adulto , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Células Sanguíneas/metabolismo , Células Sanguíneas/fisiología , Diferenciación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcriptoma , Proteína Gli3 con Dedos de Zinc
7.
Stem Cells ; 32(11): 2811-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24989459

RESUMEN

Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Ingeniería Genética , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Animales , Diferenciación Celular/genética , Fibroblastos/citología , Ingeniería Genética/métodos , Humanos , Neuronas/metabolismo
8.
Nucleic Acids Res ; 40(1): 116-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911366

RESUMEN

Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Regiones Promotoras Genéticas , Animales , Desdiferenciación Celular , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Recién Nacido , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Nature ; 448(7157): 1015-21, 2007 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-17625568

RESUMEN

Distinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence. IGF 1 receptor (IGF1R) expression was exclusive to the human ES cells, whereas FGF receptor 1 (FGFR1) expression was restricted to surrounding hdFs. Blocking the IGF-II/IGF1R pathway reduced survival and clonogenicity of human ES cells, whereas inhibition of the FGF pathway indirectly caused differentiation. IGF-II is expressed by hdFs in response to FGF, and alone was sufficient in maintaining human ES cell cultures. Our study demonstrates a direct role of the IGF-II/IGF1R axis on human ES cell physiology and establishes that hdFs produced by human ES cells themselves define the stem cell niche of pluripotent human stem cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes/citología , Somatomedinas/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Medios de Cultivo Condicionados/química , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica , Humanos , Factor II del Crecimiento Similar a la Insulina/biosíntesis , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Proteoma/metabolismo , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Somatomedinas/biosíntesis , Somatomedinas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
10.
Mol Ther ; 20(7): 1443-53, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22491213

RESUMEN

Determining the molecular regulators/pathways responsible for the specification of human embryonic stem cells (hESCs) into hematopoietic precursors has far-reaching implications for potential cell therapies and disease modeling. Mouse models lacking SCL/TAL1 (stem cell leukemia/T-cell acute lymphocytic leukemia 1) do not survive beyond early embryogenesis because of complete absence of hematopoiesis, indicating that SCL is a master early hematopoietic regulator. SCL is commonly found rearranged in human leukemias. However, there is barely information on the role of SCL on human embryonic hematopoietic development. Differentiation and sorting assays show that endogenous SCL expression parallels hematopoietic specification of hESCs and that SCL is specifically expressed in hematoendothelial progenitors (CD45(-)CD31(+)CD34(+)) and, to a lesser extent, on CD45(+) hematopoietic cells. Enforced expression of SCL in hESCs accelerates the emergence of hematoendothelial progenitors and robustly promotes subsequent differentiation into primitive (CD34(+)CD45(+)) and total (CD45(+)) blood cells with higher clonogenic potential. Short-hairpin RNA-based silencing of endogenous SCL abrogates hematopoietic specification of hESCs, confirming the early hematopoiesis-promoting effect of SCL. Unfortunately, SCL expression on its own is not sufficient to confer in vivo engraftment to hESC-derived hematopoietic cells, suggesting that additional yet undefined master regulators are required to orchestrate the stepwise hematopoietic developmental process leading to the generation of definitive in vivo functional hematopoiesis from hESCs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Madre Embrionarias/fisiología , Hematopoyesis/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Antígenos CD34/análisis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Humanos , Antígenos Comunes de Leucocito/análisis , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteína 1 de la Leucemia Linfocítica T Aguda
11.
Mol Ther Nucleic Acids ; 33: 75-92, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37416759

RESUMEN

Bernard-Soulier syndrome (BSS) is a rare congenital disease characterized by macrothrombocytopenia and frequent bleeding. It is caused by pathogenic variants in three genes (GP1BA, GP1BB, or GP9) that encode for the GPIbα, GPIbß, and GPIX subunits of the GPIb-V-IX complex, the main platelet surface receptor for von Willebrand factor, being essential for platelet adhesion and aggregation. According to the affected gene, we distinguish BSS type A1 (GP1BA), type B (GP1BB), or type C (GP9). Pathogenic variants in these genes cause absent, incomplete, or dysfunctional GPIb-V-IX receptor and, consequently, a hemorrhagic phenotype. Using gene-editing tools, we generated knockout (KO) human cellular models that helped us to better understand GPIb-V-IX complex assembly. Furthermore, we developed novel lentiviral vectors capable of correcting GPIX expression, localization, and functionality in human GP9-KO megakaryoblastic cell lines. Generated GP9-KO induced pluripotent stem cells produced platelets that recapitulated the BSS phenotype: absence of GPIX on the membrane surface and large size. Importantly, gene therapy tools reverted both characteristics. Finally, hematopoietic stem cells from two unrelated BSS type C patients were transduced with the gene therapy vectors and differentiated to produce GPIX-expressing megakaryocytes and platelets with a reduced size. These results demonstrate the potential of lentiviral-based gene therapy to rescue BSS type C.

12.
Biomed Pharmacother ; 162: 114627, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018985

RESUMEN

Osteosarcomas are frequently associated to a poor prognosis and a modest response to current treatments. EC-8042 is a well-tolerated mithramycin analog that has demonstrated an efficient ability to eliminate tumor cells, including cancer stem cell subpopulations (CSC), in sarcomas. In transcriptomic and protein expression analyses, we identified NOTCH1 signaling as one of the main pro-stemness pathways repressed by EC-8042 in osteosarcomas. Overexpression of NOTCH-1 resulted in a reduced anti-tumor effect of EC-8042 in CSC-enriched 3D tumorspheres cultures. On the other hand, the depletion of the NOTCH-1 downstream target HES-1 was able to enhance the action of EC-8042 on CSCs. Moreover, HES1 depleted cells failed to recover after treatment withdrawal and showed reduced tumor growth potential in vivo. In contrast, mice xenografted with NOTCH1-overexpressing cells responded worse than parental cells to EC-8042. Finally, we found that active NOTCH1 levels in sarcoma patients was associated to advanced disease and lower survival. Overall, these data highlight the relevant role that NOTCH1 signaling plays in mediating stemness in osteosarcoma. Moreover, we demonstrate that EC-8042 is powerful inhibitor of NOTCH signaling and that the anti-CSC activity of this mithramycin analog highly rely on its ability to repress this pathway.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Neoplasias Óseas/patología , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Osteosarcoma/patología , Plicamicina/farmacología , Receptor Notch1/metabolismo , Receptores Notch/metabolismo
13.
Cell Death Dis ; 14(6): 357, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301844

RESUMEN

Pediatric Acute Myeloid Leukemia (AML) is a rare and heterogeneous disease characterized by a high prevalence of gene fusions as driver mutations. Despite the improvement of survival in the last years, about 50% of patients still experience a relapse. It is not possible to improve prognosis only with further intensification of chemotherapy, as come with a severe cost to the health of patients, often resulting in treatment-related death or long-term sequels. To design more effective and less toxic therapies we need a better understanding of pediatric AML biology. The NUP98-KDM5A chimeric protein is exclusively found in a particular subgroup of young pediatric AML patients with complex karyotypes and poor prognosis. In this study, we investigated the impact of NUP98-KDM5A expression on cellular processes in human Pluripotent Stem Cell models and a patient-derived cell line. We found that NUP98-KDM5A generates genomic instability through two complementary mechanisms that involve accumulation of DNA damage and direct interference of RAE1 activity during mitosis. Overall, our data support that NUP98-KDM5A promotes genomic instability and likely contributes to malignant transformation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Humanos , Niño , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Oncogénicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Inestabilidad Genómica , Proteína 2 de Unión a Retinoblastoma/metabolismo
14.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067166

RESUMEN

Human embryonic stem cells (hESCs) differentiate into specialized cells, including midbrain dopaminergic neurons (DANs), and Non-human primates (NHPs) injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine develop some alterations observed in Parkinson's disease (PD) patients. Here, we obtained well-characterized DANs from hESCs and transplanted them into two parkinsonian monkeys to assess their behavioral and imaging changes. DANs from hESCs expressed dopaminergic markers, generated action potentials, and released dopamine (DA) in vitro. These neurons were transplanted bilaterally into the putamen of parkinsonian NHPs, and using magnetic resonance imaging techniques, we calculated the fractional anisotropy (FA) and mean diffusivity (MD), both employed for the first time for these purposes, to detect in vivo axonal and cellular density changes in the brain. Likewise, positron-emission tomography scans were performed to evaluate grafted DANs. Histological analyses identified grafted DANs, which were quantified stereologically. After grafting, animals showed signs of partially improved motor behavior in some of the HALLWAY motor tasks. Improvement in motor evaluations was inversely correlated with increases in bilateral FA. MD did not correlate with behavior but presented a negative correlation with FA. We also found higher 11C-DTBZ binding in positron-emission tomography scans associated with grafts. Higher DA levels measured by microdialysis after stimulation with a high-potassium solution or amphetamine were present in grafted animals after ten months, which has not been previously reported. Postmortem analysis of NHP brains showed that transplanted DANs survived in the putamen long-term, without developing tumors, in immunosuppressed animals. Although these results need to be confirmed with larger groups of NHPs, our molecular, behavioral, biochemical, and imaging findings support the integration and survival of human DANs in this pre-clinical PD model.


Asunto(s)
Células Madre Embrionarias Humanas , Enfermedad de Parkinson , Animales , Humanos , Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Haplorrinos/metabolismo , Mesencéfalo/metabolismo , Dopamina/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo
15.
Front Immunol ; 13: 803995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493522

RESUMEN

In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia/métodos , Células Asesinas Naturales , Neoplasias/terapia
16.
Front Cell Dev Biol ; 10: 846092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721502

RESUMEN

Pediatric acute myeloid leukemia (AML) is a rare and heterogeneous disease that remains the major cause of mortality in children with leukemia. To improve the outcome of pediatric AML we need to gain knowledge on the biological bases of this disease. NUP98-KDM5A (NK5A) fusion protein is present in a particular subgroup of young pediatric patients with poor outcome. We report the generation and characterization of human Embryonic Stem Cell (hESC) clonal lines with inducible expression of NK5A. Temporal control of NK5A expression during hematopoietic differentiation from hESC will be critical for elucidating its participation during the leukemogenic process.

17.
Mol Ther ; 18(12): 2173-81, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20736931

RESUMEN

Lineage-specific differentiation potential varies among different human pluripotent stem cell (hPSC) lines, becoming therefore highly desirable to prospectively know which hPSC lines exhibit the highest differentiation potential for a certain lineage. We have compared the hematopoietic potential of 14 human embryonic stem cell (hESC)/induced pluripotent stem cell (iPSC) lines. The emergence of hemogenic progenitors, primitive and mature blood cells, and colony-forming unit (CFU) potential was analyzed at different time points. Significant differences in the propensity to differentiate toward blood were observed among hPSCs: some hPSCs exhibited good blood differentiation potential, whereas others barely displayed blood-differentiation capacity. Correlation studies revealed that the CFU potential robustly correlates with hemogenic progenitors and primitive but not mature blood cells. Developmental progression of mesoendodermal and hematopoietic transcription factors expression revealed no correlation with either hematopoietic initiation or maturation efficiency. Microarray studies showed distinct gene expression profile between hPSCs with good versus poor hematopoietic potential. Although neuroectoderm-associated genes were downregulated in hPSCs prone to hematopoietic differentiation many members of the Nodal/Activin signaling were upregulated, suggesting that this signaling predicts those hPSC lines with good blood-differentiation potential. The association between Nodal/Activin signaling and the hematopoietic differentiation potential was confirmed using loss- and gain-of-function functional assays. Our data reinforce the value of prospective comparative studies aimed at determining the lineage-specific differentiation potential among different hPSCs and indicate that Nodal/Activin signaling seems to predict those hPSC lines prone to hematopoietic specification.


Asunto(s)
Activinas/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes/citología , Transducción de Señal , Activinas/farmacología , Linaje de la Célula , Perfilación de la Expresión Génica , Humanos
18.
Blood Adv ; 5(23): 4842-4854, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34470043

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Disease heterogeneity is well documented, and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) from risk-stratified AML are crucial for studying AML biology and testing novel therapeutics. Despite recent advances in PDX modeling of AML, reproducible engraftment of human AML is primarily limited to high-risk (HR) cases, with inconsistent or very protracted engraftment observed for favorable-risk (FR) and intermediate-risk (IR) patients. We used NSGS mice to characterize the engraftment robustness/kinetics of 28 AML patient samples grouped according to molecular/cytogenetic classification and assessed whether the orthotopic coadministration of patient-matched bone marrow mesenchymal stromal cells (BM MSCs) improves AML engraftment. PDX event-free survival correlated well with the predictable prognosis of risk-stratified AML patients. The majority (85-94%) of the mice were engrafted in bone marrow (BM) independently of the risk group, although HR AML patients showed engraftment levels that were significantly superior to those of FR or IR AML patients. Importantly, the engraftment levels observed in NSGS mice by week 6 remained stable over time. Serial transplantation and long-term culture-initiating cell (LTC-IC) assays revealed long-term engraftment limited to HR AML patients, fitter leukemia-initiating cells (LICs) in HR AML samples, and the presence of AML LICs in the CD34- leukemic fraction, regardless of the risk group. Finally, orthotopic coadministration of patient-matched BM MSCs and AML cells was dispensable for BM engraftment levels but favored peripheralization of engrafted AML cells. This comprehensive characterization of human AML engraftment in NSGS mice offers a valuable platform for in vivo testing of targeted therapies in risk-stratified AML patient samples.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Antígenos CD34 , Médula Ósea , Humanos , Leucemia Mieloide Aguda/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID
20.
Life Sci Alliance ; 3(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284355

RESUMEN

Mammals optimize their physiology to the light-dark cycle by synchronization of the master circadian clock in the brain with peripheral clocks in the rest of the tissues of the body. Circadian oscillations rely on a negative feedback loop exerted by the molecular clock that is composed by transcriptional activators Bmal1 and Clock, and their negative regulators Period and Cryptochrome. Components of the molecular clock are expressed during early development, but onset of robust circadian oscillations is only detected later during embryogenesis. Here, we have used naïve pluripotent mouse embryonic stem cells (mESCs) to study the role of Bmal1 during early development. We found that, compared to wild-type cells, Bmal1-/- mESCs express higher levels of Nanog protein and altered expression of pluripotency-associated signalling pathways. Importantly, Bmal1-/- mESCs display deficient multi-lineage cell differentiation capacity during the formation of teratomas and gastrula-like organoids. Overall, we reveal that Bmal1 regulates pluripotent cell differentiation and propose that the molecular clock is an hitherto unrecognized regulator of mammalian development.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción ARNTL/fisiología , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Retroalimentación Fisiológica/fisiología , Expresión Génica/genética , Células Madre Pluripotentes Inducidas/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Circadianas Period/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA