Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38518773

RESUMEN

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Pulmón , Polisacáridos Bacterianos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Femenino , Masculino , Ratones , Biopelículas , Escherichia coli/fisiología , Hipotermia/metabolismo , Hipotermia/patología , Inflamación/metabolismo , Inflamación/patología , Pulmón/microbiología , Pulmón/patología , Neumonía/microbiología , Neumonía/patología , Pseudomonas aeruginosa/fisiología , Células Receptoras Sensoriales , Polisacáridos Bacterianos/metabolismo , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Nociceptores/metabolismo
2.
PLoS Genet ; 16(6): e1008848, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32530919

RESUMEN

Pseudomonas aeruginosa colonizes the airways of cystic fibrosis (CF) patients, causing infections that can last for decades. During the course of these infections, P. aeruginosa undergoes a number of genetic adaptations. One such adaptation is the loss of swimming motility functions. Another involves the formation of the rugose small colony variant (RSCV) phenotype, which is characterized by overproduction of the exopolysaccharides Pel and Psl. Here, we provide evidence that the two adaptations are linked. Using random transposon mutagenesis, we discovered that flagellar mutations are linked to the RSCV phenotype. We found that flagellar mutants overexpressed Pel and Psl in a surface-contact dependent manner. Genetic analyses revealed that flagellar mutants were selected for at high frequencies in biofilms, and that Pel and Psl expression provided the primary fitness benefit in this environment. Suppressor mutagenesis of flagellar RSCVs indicated that Psl overexpression required the mot genes, suggesting that the flagellum stator proteins function in a surface-dependent regulatory pathway for exopolysaccharide biosynthesis. Finally, we identified flagellar mutant RSCVs among CF isolates. The CF environment has long been known to select for flagellar mutants, with the classic interpretation being that the fitness benefit gained relates to an impairment of the host immune system to target a bacterium lacking a flagellum. Our new findings lead us to propose that exopolysaccharide production is a key gain-of-function phenotype that offers a new way to interpret the fitness benefits of these mutations.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Vías Biosintéticas/genética , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Flagelos/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Polisacáridos Bacterianos/biosíntesis , Pseudomonas aeruginosa/patogenicidad , Selección Genética
3.
J Bacteriol ; 204(2): e0043321, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606374

RESUMEN

Cyclic diguanylate (c-di-GMP) signal transduction systems provide bacteria with the ability to sense changing cell status or environmental conditions and then execute suitable physiological and social behaviors in response. In this review, we provide a comprehensive census of the stimuli and receptors that are linked to the modulation of intracellular c-di-GMP. Emerging evidence indicates that c-di-GMP networks sense light, surfaces, energy, redox potential, respiratory electron acceptors, temperature, and structurally diverse biotic and abiotic chemicals. Bioinformatic analysis of sensory domains in diguanylate cyclases and c-di-GMP-specific phosphodiesterases as well as the receptor complexes associated with them reveals that these functions are linked to a diverse repertoire of protein domain families. We describe the principles of stimulus perception learned from studying these modular sensory devices, illustrate how they are assembled in varied combinations with output domains, and summarize a system for classifying these sensor proteins based on their complexity. Biological information processing via c-di-GMP signal transduction not only is fundamental to bacterial survival in dynamic environments but also is being used to engineer gene expression circuitry and synthetic proteins with à la carte biochemical functionalities.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Transducción de Señal/fisiología , Proteínas Bacterianas/metabolismo , Biología Computacional , GMP Cíclico/genética , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Dominios Proteicos , Transducción de Señal/genética
4.
J Biol Chem ; 295(34): 11949-11962, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32601062

RESUMEN

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Carbohidrato Epimerasas/metabolismo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Pseudomonas/fisiología , Proteínas Bacterianas/genética , Carbohidrato Epimerasas/genética , Polisacáridos Bacterianos/genética , Uridina Difosfato N-Acetilglucosamina/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
5.
Proc Natl Acad Sci U S A ; 112(36): 11359-64, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305928

RESUMEN

The second messenger cyclic diguanylate (c-di-GMP) controls diverse cellular processes among bacteria. Diguanylate cyclases synthesize c-di-GMP, whereas it is degraded by c-di-GMP-specific phosphodiesterases (PDEs). Nearly 80% of these PDEs are predicted to depend on the catalytic function of glutamate-alanine-leucine (EAL) domains, which hydrolyze a single phosphodiester group in c-di-GMP to produce 5'-phosphoguanylyl-(3',5')-guanosine (pGpG). However, to degrade pGpG and prevent its accumulation, bacterial cells require an additional nuclease, the identity of which remains unknown. Here we identify oligoribonuclease (Orn)-a 3'→5' exonuclease highly conserved among Actinobacteria, Beta-, Delta- and Gammaproteobacteria-as the primary enzyme responsible for pGpG degradation in Pseudomonas aeruginosa cells. We found that a P. aeruginosa Δorn mutant had high intracellular c-di-GMP levels, causing this strain to overexpress extracellular polymers and overproduce biofilm. Although recombinant Orn degraded small RNAs in vitro, this enzyme had a proclivity for degrading RNA oligomers comprised of two to five nucleotides (nanoRNAs), including pGpG. Corresponding with this activity, Δorn cells possessed highly elevated pGpG levels. We found that pGpG reduced the rate of c-di-GMP degradation in cell lysates and inhibited the activity of EAL-dependent PDEs (PA2133, PvrR, and purified recombinant RocR) from P. aeruginosa. This pGpG-dependent inhibition was alleviated by the addition of Orn. These data suggest that elevated levels of pGpG exert product inhibition on EAL-dependent PDEs, thereby increasing intracellular c-di-GMP in Δorn cells. Thus, we propose that Orn provides homeostatic control of intracellular pGpG under native physiological conditions and that this activity is fundamental to c-di-GMP signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Exorribonucleasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Proteínas Bacterianas/genética , Western Blotting , GMP Cíclico/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Mutación , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Nat Commun ; 12(1): 1986, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790266

RESUMEN

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change. Analyses using protein chimeras indicate that heat-sensing is mediated by a thermosensitive Per-Arnt-SIM (PAS) domain. TdcA homologs are widespread in sequence databases, and a distantly related, heterologously expressed homolog from the Betaproteobacteria order Gallionellales also displayed thermosensitive diguanylate cyclase activity. We propose, therefore, that thermotransduction is a conserved function of c-di-GMP signaling networks, and that thermosensitive catalysis of a second messenger constitutes a mechanism for thermal sensing in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas aeruginosa/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología , Algoritmos , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Cromatografía Liquida , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Espectrometría de Masas , Liasas de Fósforo-Oxígeno/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Temperatura
7.
Methods Mol Biol ; 1657: 263-278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28889300

RESUMEN

The second messenger, cyclic diguanylate (c-di-GMP), regulates a variety of bacterial cellular and social behaviors. A key determinant of c-di-GMP levels in cells is its degradation by c-di-GMP-specific phosphodiesterases (PDEs). Here, we describe an assay to determine c-di-GMP degradation rates in vitro using 2'-O-(N'-methylanthraniloyl)-cyclic diguanylate (MANT-c-di-GMP). Additionally, a protocol for the production and purification of recombinant Pseudomonas aeruginosa RocR, a c-di-GMP-specific PDE that may serve as a control in MANT-c-di-GMP assays, is provided. The use of the fluorescent MANT-c-di-GMP analogue can deliver fundamental information about PDE function, and is suitable for identifying and investigating c-di-GMP-specific PDE activators and inhibitors.


Asunto(s)
GMP Cíclico/análogos & derivados , Pruebas de Enzimas , Hidrolasas Diéster Fosfóricas/metabolismo , ortoaminobenzoatos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Activación Enzimática , Pruebas de Enzimas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , ortoaminobenzoatos/química
8.
Nat Protoc ; 10(11): 1820-41, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26492139

RESUMEN

Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knock-ins, as well as single-nucleotide insertions, deletions and substitutions, in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selections are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic-resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ∼2 weeks.


Asunto(s)
Marcación de Gen/métodos , Genoma Bacteriano , Biología Molecular/métodos , Pseudomonas aeruginosa/genética , Ingeniería Genética , Vectores Genéticos , Recombinación Homóloga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA