Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 128: 105093, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34864125

RESUMEN

The European Commission's Green Deal is a major policy initiative aiming to achieve a climate-neutral, zero-pollution, sustainable, circular and inclusive economy, driving both the New Industrial Strategy for Europe and the Chemicals Strategy for Sustainability. Innovative materials can help to reach these policy goals, but they need to be safe and sustainable themselves. Thus, one aim is to shift the development of chemicals to Safe- and Sustainable-by-Design, and define a new systems approach and criteria for sustainability to achieve this. An online workshop was organised in September 2020 by the Joint Research Centre and the Directorate-General Research and Innovation of the European Commission, with participants from academia, non-governmental organisations, industry and regulatory bodies. The aims were to introduce the concept of Safe- and Sustainable-by-Design, to identify industrial and regulatory challenges in achieving safer and more sustainable Smart Nanomaterials as an example of innovative materials, and to deliver recommendations for directions and actions necessary to meet these challenges. The following needs were identified: (i) an agreed terminology, (ii) a common understanding of the principles of Safe- and Sustainable-by-Design, iii) criteria, assessment tools and incentives to achieve a transition from Safe-by-Design to Safe- and Sustainable-by-Design, and (iv) preparedness of regulators and legislation for innovative chemicals/nanomaterials. This paper presents the authors' view on the state of the art as well as the needs for future activities, based on discussions at the workshop and further considerations. The case of Smart Nanomaterials is used to illustrate the Safe- and Sustainable-by-Design concept and challenges for its implementation. Most of the considerations can be extended to other advanced materials and to chemicals and products in general.


Asunto(s)
Química/normas , Ambiente , Regulación Gubernamental , Nanoestructuras/química , Nanotecnología/organización & administración , Desarrollo Sostenible/tendencias , Unión Europea , Humanos , Nanotecnología/normas , Políticas
2.
Regul Toxicol Pharmacol ; 122: 104885, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33617940

RESUMEN

Nanotechnology and more particularly nanotechnology-based products and materials have provided a huge potential for novel solutions to many of the current challenges society is facing. However, nanotechnology is also an area of product innovation that is sometimes developing faster than regulatory frameworks. This is due to the high complexity of some nanomaterials, the lack of a globally harmonised regulatory definition and the different scopes of regulation at a global level. Research organisations and regulatory bodies have spent many efforts in the last two decades to cope with these challenges. Although there has been a significant advancement related to analytical approaches for labelling purposes as well as to the development of suitable test guidelines for nanomaterials and their safety assessment, there is a still a need for greater global collaboration and consensus in the regulatory field. Furthermore, with growing societal concerns on plastic litter and tiny debris produced by degradation of littered plastic objects, the impact of micro- and nanoplastics on humans and the environment is an emerging issue. Despite increasing research and initial regulatory discussions on micro- and nanoplastics, there are still knowledge gaps and thus an urgent need for action. As nanoplastics can be classified as a specific type of incidental nanomaterials, current and future scientific investigations should take into account the existing profound knowledge on nanotechnology/nanomaterials when discussing issues around nanoplastics. This review was conceived at the 2019 Global Summit on Regulatory Sciences that took place in Stresa, Italy, on 24-26 September 2019 (GSRS 2019) and which was co-organised by the Global Coalition for Regulatory Science Research (GCRSR) and the European Commission's (EC) Joint Research Centre (JRC). The GCRSR consists of regulatory bodies from various countries around the globe including EU bodies. The 2019 Global Summit provided an excellent platform to exchange the latest information on activities carried out by regulatory bodies with a focus on the application of nanotechnology in the agriculture/food sector, on nanoplastics and on nanomedicines, including taking stock and promoting further collaboration. Recently, the topic of micro- and nanoplastics has become a new focus of the GCRSR. Besides discussing the challenges and needs, some future directions on how new tools and methodologies can improve the regulatory science were elaborated by summarising a significant portion of discussions during the summit. It has been revealed that there are still some uncertainties and knowledge gaps with regard to physicochemical properties, environmental behaviour and toxicological effects, especially as testing described in the dossiers is often done early in the product development process, and the material in the final product may behave differently. The harmonisation of methodologies for quantification and risk assessment of nanomaterials and micro/nanoplastics, the documentation of regulatory science studies and the need for sharing databases were highlighted as important aspects to look at.


Asunto(s)
Internacionalidad , Microplásticos/química , Microplásticos/normas , Nanoestructuras/química , Nanoestructuras/normas , Exposición a Riesgos Ambientales/efectos adversos , Salud Ambiental/normas , Microplásticos/efectos adversos , Nanoestructuras/efectos adversos , Estándares de Referencia
3.
Small ; 16(36): e2002228, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32743899

RESUMEN

Identifying nanomaterials (NMs) according to European Union legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission's (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs.

4.
Regul Toxicol Pharmacol ; 104: 74-83, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30831158

RESUMEN

The OECD Working Party on Manufactured Nanomaterials (WPMN) provides a global forum for discussion of nano-safety issues. Together with the OECD Test Guidelines Programme (TGP) the WPMN has explored the need for adaptation of some of the existing OECD Test Guidelines (TGs) and Guidance Documents (GDs) as well as developing new TGs and GDs to specifically address NM issues. An overview is provided of progress in the TGP and WPMN, and information on supporting initiatives, regarding the development of TGs for nanomaterials addressing Physical Chemical Properties, Effects on Biotic Systems, Environmental Fate and Behaviour, and Health Effects. Three TGs specifically addressing manufactured nanomaterials have been adopted: a new TG318 ″Dispersion Stability of Nanomaterials in Simulated Environmental Media", and adaptation of TG412 and TG413 on Subacute Inhalation Toxicity: 28-Day Study/90-day Study. The associated GD39 on Inhalation Toxicity Testing has also been revised. The TGP current develops four new TGs and four GDs. One new TG and six GDs are developed in the WPMN. Six new proposals were submitted to the TGP in 2018. Furthermore, as TGs are accompanied by OECD harmonised templates (OHTs) for data collection, an outline of recently developed OHTs particularly relevant for NMs is also included.


Asunto(s)
Nanoestructuras/efectos adversos , Nanoestructuras/análisis , Organización para la Cooperación y el Desarrollo Económico , Pruebas de Toxicidad/normas , Administración por Inhalación , Animales , Humanos , Nanoestructuras/administración & dosificación
5.
Arch Toxicol ; 92(1): 121-141, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29273819

RESUMEN

Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Nanoestructuras/análisis , Nanoestructuras/toxicidad , Medición de Riesgo/métodos , Administración Oral , Animales , Desinfectantes , Ecotoxicología/métodos , Exposición a Riesgos Ambientales/efectos adversos , Embalaje de Alimentos , Alemania , Humanos , Industrias/métodos , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Legislación Alimentaria , Nanoestructuras/administración & dosificación , Nanoestructuras/normas , Opinión Pública
6.
Regul Toxicol Pharmacol ; 92: 8-28, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29074277

RESUMEN

Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted.


Asunto(s)
Nanoestructuras/química , Humanos , Organización para la Cooperación y el Desarrollo Económico , Tamaño de la Partícula , Agua/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-26397955

RESUMEN

Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.


Asunto(s)
Ecotoxicología , Nanopartículas/análisis , Contaminantes Químicos del Agua/análisis
8.
Regul Toxicol Pharmacol ; 73(1): 463-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169479

RESUMEN

Nanotechnology has the potential to innovate the agricultural, feed and food sectors (hereinafter referred to as agri/feed/food). Applications that are marketed already include nano-encapsulated agrochemicals or nutrients, antimicrobial nanoparticles and active and intelligent food packaging. Many nano-enabled products are currently under research and development, and may enter the market in the near future. As for any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Several countries all over the world have been active in examining the appropriateness of their regulatory frameworks for dealing with nanotechnologies. As a consequence of this, different approaches have been taken in regulating nano-based products in agri/feed/food. The EU, along with Switzerland, were identified to be the only world region where nano-specific provisions have been incorporated in existing legislation, while in other regions nanomaterials are regulated more implicitly by mainly building on guidance for industry. This paper presents an overview and discusses the state of the art of different regulatory measures for nanomaterials in agri/feed/food, including legislation and guidance for safety assessment in EU and non-EU countries.


Asunto(s)
Seguridad de Productos para el Consumidor/legislación & jurisprudencia , Alimentos/normas , Legislación Alimentaria/normas , Nanoestructuras/normas , Nanotecnología/legislación & jurisprudencia , Sector Privado/legislación & jurisprudencia , Agricultura/legislación & jurisprudencia , Agroquímicos/normas , Animales , Antiinfecciosos/normas , Unión Europea , Embalaje de Alimentos/legislación & jurisprudencia , Humanos , Medición de Riesgo , Seguridad/legislación & jurisprudencia
9.
Biomed Microdevices ; 15(3): 495-507, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23404262

RESUMEN

Two methods for protein patterning on antifouling surfaces have been applied to analyze the density and bioactivity of the proteins after deposition. Microcontact printing has been used as a technique to transfer fibronectin through conformal contact, while piezoelectric deposition has been employed as a non-contact technique for producing arrays of fibronectin (FN). Plasma deposited polyethylene oxide-like (PEO-like) films have been used as non-fouling background to achieve the bioadhesive/biorepellent surface contrast. Both patterning methods allow the direct fabrication of protein arrays on a non-fouling substrate, and the subsequent formation of a pattern of stem cells by cell attachment on the arrayed substrates. Microcontact printing produced fully packed homogeneous fibronectin patterns, much denser than microspotted patterns. Both printing and spotting technologies generated functional protein arrays, their bioactivity being primarily modulated by the density of the deposited protein layer. Optimization of the FN parameters used for deposition has lead to the achievement of high-quality microarrays with large population of neural stem cells immobilized in the patterns in serum-free conditions, where cells exhibit a more homogeneous starting population and factors influencing fate decisions can be more easily tracked. The immunorecognition of fibronectin targeted antibodies, as well as the cell density, increase with the protein density up to a saturation point. Over 100 ng/cm² of fibronectin on the surface leads to a decrease in the number of attached cells and a raise of cell spreading.


Asunto(s)
Fibronectinas/química , Microtecnología/métodos , Gases em Plasma/química , Polietilenglicoles/química , Impresión/métodos , Células Madre/citología , Adhesivos/química , Fibronectinas/metabolismo , Humanos , Polimerizacion , Propiedades de Superficie
10.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36985884

RESUMEN

The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool's knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes.

11.
ALTEX ; 40(1): 125-140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35796348

RESUMEN

Manufacturing and functionalizing materials at the nanoscale has led to the generation of a whole array of nanoforms (NFs) of substances varying in size, morphology, and surface characteristics. Due to financial, time, and ethical considerations, testing every unique NF for adverse effects is virtually impossible. Use of hypothesis-driven grouping and read-across approaches, as supported by the GRACIOUS Framework, represents a promising alternative to case-by-case testing that will make the risk assessment process more efficient. Through application of appropriate grouping hypotheses, the Framework facilitates the assessment of similarity between NFs, thereby supporting grouping and read-across of information, minimizing the need for new testing, and aligning with the 3R principles of replacement, reduction, and refinement of animals in toxicology studies. For each grouping hypothesis an integrated approach to testing and assessment (IATA) guides the user in data gathering and acquisition to test the hypothesis, following a structured format to facilitate efficient decision-making. Here we present the template used to generate the GRACIOUS grouping hypotheses encompassing information relevant to "Lifecycle, environmental release, and human exposure", "What they are: physicochemical characteristics", "Where they go: environmental fate, uptake, and toxicokinetics", and "What they do: human and environmental toxicity". A summary of the template-derived hypotheses focusing on human health is provided, along with an overview of the IATAs generated by the GRACIOUS project. We discuss the application and flexibility of the template, providing the opportunity to expand the application of grouping and read-across in a logical, evidence-based manner to a wider range of NFs and substances.


Asunto(s)
Sustancias Peligrosas , Animales , Humanos , Medición de Riesgo , Sustancias Peligrosas/toxicidad , Sustancias Peligrosas/química , Toxicocinética
12.
Nanotoxicology ; 16(2): 195-216, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35506346

RESUMEN

This manuscript proposes a methodology to assess the completeness and quality of physicochemical and hazard datasets for risk assessment purposes. The approach is also specifically applicable to similarity assessment as a basis for grouping of (nanoforms of) chemical substances as well as for classification of the substances according to the Classification, Labeling and Packaging regulation. The unique goal of this approach is to assess data quality in such a way that all the steps are automatized, thus reducing reliance on expert judgment. The analysis starts from available (meta)data as provided in the data entry templates developed by the NanoSafety community and used for import into the eNanoMapper database. The methodology is implemented in the templates as a traffic light system-the providers of the data can see in real time the completeness scores calculated by the system for their datasets in green, yellow, or red. This is an interactive feedback feature that is intended to provide an incentive for anyone inserting data into the database to deliver more complete and higher quality datasets. The users of the data can also see this information both in the data entry templates and on the database interface, which enables them to select better datasets for their assessments. The proposed methodology has been partially implemented in the eNanoMapper database and in a Weight of Evidence approach for the regulatory classification of nanomaterials. It was fully implemented in a publicly available online R tool.


Asunto(s)
Exactitud de los Datos , Nanoestructuras , Bases de Datos Factuales , Nanoestructuras/química , Medición de Riesgo/métodos
13.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808073

RESUMEN

Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials.

14.
F1000Res ; 11: 1532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38463031

RESUMEN

Background: Advanced materials are most likely to bring future economic, environmental and social benefits. At the same time, they may pose challenges regarding their safety and sustainability along the entire lifecycle. This needs to be timely addressed by the stakeholders (industry, research, policy, funding and regulatory bodies). As part of a larger foresight project, this study aimed to identify areas of scientific research and technological development related to advanced materials, in particular advanced nanomaterials and the sub-group of smart nanomaterials. The study identified and collected data to build relevant research and innovation indicators and analyse trends, impact and other implications. Methods: This study consisted of an iterative process including a documentation phase followed by the identification, description and development of a set of core research and innovation indicators regarding scientific publications, EU projects and patents. The data was extracted mainly from SCOPUS, CORDIS and PATSTAT databases using a predefined search string that included representative keywords. The trends, distributions and other aspects reflected in the final version of the indicators were analysed, e.g. the number of items in a period of time, geographical distribution, organisations involved, categories of journals, funding programmes, costs and technology areas. Results: Generally, for smart nanomaterials the data used represent around 3.5% of the advanced nanomaterials data, while for each field analysed, they represent 4.4% for publications, 13% for projects and 1.1% for patents. The study shows current trends for advanced nanomaterials at a top-level information that can be further extended with sub-indicators. Generally, the results indicated a significant growth in research into advanced nanomaterials, including smart nanomaterials, in the last decade, leading to an increased availability of information. Conclusion: These indicators identify trends regarding scientific and technological achievements and represent an important element when examining possible impacts on society and policy implications associated to these areas.


Asunto(s)
Nanoestructuras , Tecnología , Costos y Análisis de Costo , Políticas , Publicaciones
15.
NanoImpact ; 25: 100366, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559874

RESUMEN

The risk of each nanoform (NF) of the same substance cannot be assumed to be the same, as they may vary in their physicochemical characteristics, exposure and hazard. However, neither can we justify a need for more animal testing and resources to test every NF individually. To reduce the need to test all NFs, (regulatory) information requirements may be fulfilled by grouping approaches. For such grouping to be acceptable, it is important to demonstrate similarities in physicochemical properties, toxicokinetic behaviour, and (eco)toxicological behaviour. The GRACIOUS Framework supports the grouping of NFs, by identifying suitable grouping hypotheses that describe the key similarities between different NFs. The Framework then supports the user to gather the evidence required to test these hypotheses and to subsequently assess the similarity of the NFs within the proposed group. The evidence needed to support a hypothesis is gathered by an Integrated Approach to Testing and Assessment (IATA), designed as decision trees constructed of decision nodes. Each decision node asks the questions and provides the methods needed to obtain the most relevant information. This White paper outlines existing and novel methods to assess similarity of the data generated for each decision node, either via a pairwise analysis conducted property-by-property, or by assessing multiple decision nodes simultaneously via a multidimensional analysis. For the pairwise comparison conducted property-by-property we included in this White paper: The x-fold, Bayesian and Arsinh-OWA distance algorithms performed comparably in the scoring of similarity between NF pairs. The Euclidean distance was also useful, but only with proper data transformation. The x-fold method does not standardize data, and thus produces skewed histograms, but has the advantage that it can be implemented without programming knowhow. A range of multidimensional evaluations, using for example dendrogram clustering approaches, were also investigated. Multidimensional distance metrics were demonstrated to be difficult to use in a regulatory context, but from a scientific perspective were found to offer unexpected insights into the overall similarity of very different materials. In conclusion, for regulatory purposes, a property-by-property evaluation of the data matrix is recommended to substantiate grouping, while the multidimensional approaches are considered to be tools of discovery rather than regulatory methods.


Asunto(s)
Nanoestructuras , Animales , Teorema de Bayes , Nanoestructuras/química , Medición de Riesgo/métodos
16.
NanoImpact ; 25: 100375, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559881

RESUMEN

Before placing a new nanoform (NF) on the market, its potential adverse effects must be evaluated. This may e.g. be done via hazard and risk assessment. Grouping and read-across of NFs is a possible strategy to reduce resource consumption, maximising the use of existing data for assessment of NFs. The GRACIOUS project provides a framework in which possible grouping and read-across for NFs is mainly based on an evaluation of their similarity. The impact of NFs on human health and the environment depends strongly on the concentration of the NF and its physicochemical properties, such as chemical composition, size distribution, shape, etc. Hence, knowledge of the most relevant physicochemical properties is essential information for comparing similarity. The presented work aims to refine existing proposals for sets of descriptors (descriptor array) that are needed to describe distinct NFs of a material to identify the most relevant ones for grouping and read-across. The selection criteria for refining this descriptor array are explained and demonstrated. Relevant protocols and methods are proposed for each physicochemical property. The required and achievable measurement accuracies of the refined descriptor array are reviewed, as this information is necessary for similarity assessment of NFs based on individual physicochemical properties.


Asunto(s)
Nanoestructuras , Humanos , Nanoestructuras/química , Medición de Riesgo/métodos
17.
NanoImpact ; 27: 100410, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35787478

RESUMEN

Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification. Similarity assessment requires an understanding of the achievable accuracy of the available methods. It must be demonstrated that measured differences between NFs are greater than the achievable accuracy of the method, to have confidence that the measured differences are indeed real. To estimate the achievable accuracy of a method, we assess the reproducibility of six analytical techniques routinely used to measure these five basic descriptors of nanoforms: inductively coupled plasma mass spectrometry (ICP-MS), Thermogravimetric analysis (TGA), Electrophoretic light scattering (ELS), Brunauer-Emmett-Teller (BET) specific surface area and transmission and scanning electron microscopy (TEM and SEM). Assessment was performed on representative test materials to evaluate the reproducibility of methods on single NFs of substances. The achievable accuracy was defined as the relative standard deviation of reproducibility (RSDR) for each method. Well established methods such as ICP-MS quantification of metal impurities, BET measurements of specific surface area, TEM and SEM for size and shape and ELS for surface potential and isoelectric point, all performed well, with low RSDR, generally between 5 and 20%, with maximal fold differences usually <1.5 fold between laboratories. Applications of technologies such as TGA for measuring water content and putative organic impurities, additives or surface treatments (through loss on ignition), which have a lower technology readiness level, demonstrated poorer reproducibility, but still within 5-fold differences. The expected achievable accuracy of ICP-MS may be estimated for untested analytes using established relationships between concentration and reproducibility, but this is not yet the case for TGA measurements of loss on ignition or water content. The results here demonstrate an approach to estimate the achievable accuracy of a method that should be employed when interpreting differences between NFs on individual physicochemical properties.


Asunto(s)
Metales , Agua , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados
18.
NanoImpact ; 28: 100416, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995388

RESUMEN

The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.


Asunto(s)
Nanotecnología , Humanos , Reproducibilidad de los Resultados
19.
NanoImpact ; 24: 100356, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-35559815

RESUMEN

Commentary on two recent papers published in NanoImpact "Safe(r) by design implementation in the nanotechnology industry" and "Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials".


Asunto(s)
Nanoestructuras , Nanotecnología , Animales , Industrias , Estadios del Ciclo de Vida , Nanoestructuras/efectos adversos , Factores Socioeconómicos
20.
NanoImpact ; 21: 100297, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33738354

RESUMEN

The European Green Deal, the European Commission's new Action Plan for a Circular Economy, the new European Industrial Strategy and the Chemicals Strategy for Sustainability launched in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive European Union's economy. In line with the United Nations Sustainable Development Goals 2030, these policies require that any new material or product should be not only functional and cost-effective but also safe and sustainable to ensure compliance with regulation and acceptance by consumers. Nanotechnology is one of the technologies that could enable such a green growth. This paper focuses on advanced nanomaterials that actively respond to external stimuli, also known as 'smart nanomaterials', and which are already on the market or in the research and development phase for non-medical applications such as in agriculture, food, food packaging and cosmetics. A review shows that smart nanomaterials and enabled products may present new challenges for safety and sustainability assessment due to their complexity and dynamic behaviour. Moreover, existing regulatory frameworks, in particular in the European Union, are probably not fully prepared to address them. What is missing today is a systematic and comprehensive approach that allows for considering sustainability aspects hand in hand with safety considerations very early on at the material design stage. We call on innovators, scientists and authorities to further develop and promote the 'Safe- and Sustainable-by-Design' concept in nanotechnology and propose some initiatives to go into this direction.


Asunto(s)
Nanoestructuras , Agricultura , Unión Europea , Nanoestructuras/efectos adversos , Nanotecnología , Desarrollo Sostenible
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA