Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36917985

RESUMEN

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Asunto(s)
Estrés del Retículo Endoplásmico , Mucosa Intestinal , Células Th17 , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Células Th17/citología , Células Th17/metabolismo , Diferenciación Celular , Humanos , Animales , Ratones , Ratones Transgénicos , Antibacterianos/farmacología
2.
J Biol Chem ; 298(7): 102066, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618019

RESUMEN

Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress-mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR-CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.


Asunto(s)
Bocio , Hipotiroidismo , Tiroglobulina , Glándula Tiroides , Animales , Proliferación Celular , Bocio/congénito , Bocio/genética , Bocio/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Ratones , Ratas , Tiroglobulina/genética , Glándula Tiroides/fisiopatología
3.
Proc Natl Acad Sci U S A ; 114(52): E11323-E11332, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229863

RESUMEN

Thyroid hormone (TH) and TH receptors (TRs) α and ß act by binding to TH response elements (TREs) in regulatory regions of target genes. This nuclear signaling is established as the canonical or type 1 pathway for TH action. Nevertheless, TRs also rapidly activate intracellular second-messenger signaling pathways independently of gene expression (noncanonical or type 3 TR signaling). To test the physiological relevance of noncanonical TR signaling, we generated knockin mice with a mutation in the TR DNA-binding domain that abrogates binding to DNA and leads to complete loss of canonical TH action. We show that several important physiological TH effects are preserved despite the disruption of DNA binding of TRα and TRß, most notably heart rate, body temperature, blood glucose, and triglyceride concentration, all of which were regulated by noncanonical TR signaling. Additionally, we confirm that TRE-binding-defective TRß leads to disruption of the hypothalamic-pituitary-thyroid axis with resistance to TH, while mutation of TRα causes a severe delay in skeletal development, thus demonstrating tissue- and TR isoform-specific canonical signaling. These findings provide in vivo evidence that noncanonical TR signaling exerts physiologically important cardiometabolic effects that are distinct from canonical actions. These data challenge the current paradigm that in vivo physiological TH action is mediated exclusively via regulation of gene transcription at the nuclear level.


Asunto(s)
Sistema Hipotálamo-Hipofisario/metabolismo , Miocardio/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Animales , Técnicas de Sustitución del Gen , Ratones , Ratones Noqueados , Receptores de Hormona Tiroidea/genética , Hormonas Tiroideas/genética
4.
Development ; 143(11): 1958-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068110

RESUMEN

Thyroid follicles, the functional units of the thyroid gland, are delineated by a monolayer of thyrocytes resting on a continuous basement membrane. The developmental mechanisms of folliculogenesis, whereby follicles are formed by the reorganization of a non-structured mass of non-polarized epithelial cells, are largely unknown. Here we show that assembly of the epithelial basement membrane is crucial for folliculogenesis and is controlled by endothelial cell invasion and by BMP-Smad signaling in thyrocytes. Thyroid-specific Smad1 and Smad5 double-knockout (Smad1/5(dKO)) mice displayed growth retardation, hypothyroidism and defective follicular architecture. In Smad1/5(dKO) embryonic thyroids, epithelial cells remained associated in large clusters and formed small follicles. Although similar follicular defects are found in Vegfa knockout (Vegfa(KO)) thyroids, Smad1/5(dKO) thyroids had normal endothelial cell density yet impaired endothelial differentiation. Interestingly, both Vegfa(KO) and Smad1/5(dKO) thyroids displayed impaired basement membrane assembly. Furthermore, conditioned medium (CM) from embryonic endothelial progenitor cells (eEPCs) rescued the folliculogenesis defects of both Smad1/5(dKO) and Vegfa(KO) thyroids. Laminin α1, ß1 and γ1, abundantly released by eEPCs into CM, were crucial for folliculogenesis. Thus, epithelial Smad signaling and endothelial cell invasion promote folliculogenesis via assembly of the basement membrane.


Asunto(s)
Membrana Basal/metabolismo , Células Endoteliales/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Glándula Tiroides/embriología , Animales , Membrana Basal/efectos de los fármacos , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Colágeno Tipo IV/metabolismo , Medios de Cultivo Condicionados/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotiroidismo/metabolismo , Laminina/metabolismo , Ratones Noqueados , Organogénesis/efectos de los fármacos , Organogénesis/genética , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Epiteliales Tiroideas/citología , Células Epiteliales Tiroideas/efectos de los fármacos , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Nature ; 491(7422): 66-71, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23051751

RESUMEN

The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Glándula Tiroides/citología , Glándula Tiroides/fisiología , Animales , Modelos Animales de Enfermedad , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Hipotiroidismo/patología , Hipotiroidismo/cirugía , Hipotiroidismo/terapia , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Glándula Tiroides/anatomía & histología , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/trasplante , Factor Nuclear Tiroideo 1 , Tirotropina/sangre , Tirotropina/farmacología , Tiroxina/sangre , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Biochim Biophys Acta ; 1830(7): 3987-4003, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22986150

RESUMEN

BACKGROUND: Six known steps are required for the circulating thyroid hormone (TH) to exert its action on target tissues. For three of these steps, human mutations and distinct phenotypes have been identified. SCOPE OF REVIEW: The clinical, laboratory, genetic and molecular characteristics of these three defects of TH action are the subject of this review. The first defect, recognized 45years ago, produces resistance to TH and carries the acronym, RTH. In the majority of cases it is caused by TH receptor ß gene mutations. It has been found in over 3000 individuals belonging to approximately 1000 families. Two relatively novel syndromes presenting reduced sensitivity to TH involve membrane transport and metabolism of TH. One of them, caused by mutations in the TH cell-membrane transporter MCT8, produces severe psychomotor defects. It has been identified in more than 170 males from 90 families. A defect of the intracellular metabolism of TH in 10 individuals from 8 families is caused by mutations in the SECISBP2 gene required for the synthesis of selenoproteins, including TH deiodinases. MAJOR CONCLUSIONS: Defects at different steps along the pathway leading to TH action at cellular level can manifest as reduced sensitivity to TH. GENERAL SIGNIFICANCE: Knowledge of the molecular mechanisms involved in TH action allows the recognition of the phenotypes caused by defects of TH action. Once previously known defects have been ruled out, new molecular defects could be sought, thus opening the avenue for novel insights in thyroid physiology. This article is part of a Special Issue entitled Thyroid hormone signaling.


Asunto(s)
Síndrome de Resistencia a Hormonas Tiroideas/fisiopatología , Hormonas Tiroideas/fisiología , Transporte Biológico/genética , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fenotipo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/fisiología , Síndrome de Resistencia a Hormonas Tiroideas/genética , Síndrome de Resistencia a Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(4): 1615-20, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220306

RESUMEN

Mutations of BRAF are found in ∼45% of papillary thyroid cancers and are enriched in tumors with more aggressive properties. We developed mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E)/TPO-Cre) to explore the role of endogenous expression of this oncoprotein on tumor initiation and progression. In contrast to other Braf-induced mouse models of tumorigenesis (i.e., melanomas and lung), in which knock-in of Braf(V600E) induces mostly benign lesions, Braf-expressing thyrocytes become transformed and progress to invasive carcinomas with a very short latency, a process that is dampened by treatment with an allosteric MEK inhibitor. These mice also become profoundly hypothyroid due to deregulation of genes involved in thyroid hormone biosynthesis and consequently have high TSH levels. To determine whether TSH signaling cooperates with oncogenic Braf in this process, we first crossed LSL-Braf(V600E)/TPO-Cre with TshR knockout mice. Although oncogenic Braf was appropriately activated in thyroid follicular cells of these mice, they had a lower mitotic index and were not transformed. Thyroid-specific deletion of the Gsα gene in LSL-Braf(V600E)/TPO-Cre/Gnas-E1(fl/fl) mice also resulted in an attenuated cancer phenotype, indicating that the cooperation of TshR with oncogenic Braf is mediated in part by cAMP signaling. Once tumors were established in mice with wild-type TshR, suppression of TSH did not revert the phenotype. These data demonstrate the key role of TSH signaling in Braf-induced papillary thyroid cancer initiation and provide experimental support for recent observations in humans pointing to a strong association between TSH levels and thyroid cancer incidence.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/metabolismo , Receptores de Tirotropina/metabolismo , Transducción de Señal , Neoplasias de la Tiroides/metabolismo , Animales , Carcinoma , Carcinoma Papilar , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas B-raf/genética , Radioinmunoensayo , Receptores de Tirotropina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cáncer Papilar Tiroideo , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Tirotropina/sangre , Tirotropina/metabolismo , Tiroxina/sangre , Tiroxina/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(49): E1321-9, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22065740

RESUMEN

Thyroid hormone (TH) metabolism, mediated by deiodinase types 1, 2, and 3 (D1, D2, and D3) is profoundly affected by acute illness. We examined the role of TH metabolism during ventilator-induced lung injury (VILI) in mice. Mice exposed to VILI recapitulated the serum TH findings of acute illness, namely a decrease in 3,5,3'-triiodothyronine (T(3)) and thyroid-stimulating hormone and an increase in reverse T(3). Both D2 immunoreactivity and D2 enzymatic activity were increased significantly. D1 and D3 activity did not change. Using D2 knockout (D2KO) mice, we determined whether the increase in D2 was an adaptive response. Although similar changes in serum TH levels were observed in D2KO and WT mice, D2KO mice exhibited greater susceptibility to VILI than WT mice, as evidenced by poorer alveoli integrity and quantified by lung chemokine and cytokine mRNA induction. These data suggest that an increase in lung D2 is protective against VILI. Similar findings of increased inflammatory markers were found in hypothyroid WT mice exposed to VILI compared with euthyroid mice, indicating that the lungs were functionally hypothyroid. Treatment of D2KO mice with T(3) reversed many of the lung chemokine and cytokine profiles seen in response to VILI, demonstrating a role for T(3) in the treatment of lung injury. We conclude that TH metabolism in the lung is linked to the response to inflammatory injury and speculate that D2 exerts its protective effect by making more TH available to the injured lung tissue.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Yoduro Peroxidasa/metabolismo , Pulmón/enzimología , Lesión Pulmonar Inducida por Ventilación Mecánica/enzimología , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/genética , Animales , Quimiocinas/genética , Citocinas/genética , Activación Enzimática/fisiología , Expresión Génica/efectos de los fármacos , Genotipo , Inmunohistoquímica , Yoduro Peroxidasa/genética , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre , Triyodotironina/farmacología , Lesión Pulmonar Inducida por Ventilación Mecánica/sangre , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Yodotironina Deyodinasa Tipo II
9.
Nat Genet ; 37(11): 1247-52, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16228000

RESUMEN

Incorporation of selenocysteine (Sec), through recoding of the UGA stop codon, creates a unique class of proteins. Mice lacking tRNA(Sec) die in utero, but the in vivo role of other components involved in selenoprotein synthesis is unknown, and Sec incorporation defects have not been described in humans. Deiodinases (DIOs) are selenoproteins involved in thyroid hormone metabolism. We identified three of seven siblings with clinical evidence of abnormal thyroid hormone metabolism. Their fibroblasts showed decreased DIO2 enzymatic activity not linked to the DIO2 locus. Systematic linkage analysis of genes involved in DIO2 synthesis and degradation led to the identification of an inherited Sec incorporation defect, caused by a homozygous missense mutation in SECISBP2 (also called SBP2). An unrelated child with a similar phenotype was compound heterozygous with respect to mutations in SECISBP2. Because SBP2 is epistatic to selenoprotein synthesis, these defects had a generalized effect on selenoproteins. Incomplete loss of SBP2 function probably causes the mild phenotype.


Asunto(s)
Mutación Missense/genética , Proteínas de Unión al ARN/genética , Hormonas Tiroideas/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Fibroblastos/enzimología , Heterocigoto , Homocigoto , Humanos , Yoduro Peroxidasa/metabolismo , Masculino , Linaje , Hermanos , Piel/enzimología
10.
JCI Insight ; 9(7)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376950

RESUMEN

Patients with mutations in the thyroid hormone (TH) cell transporter monocarboxylate transporter 8 (MCT8) gene develop severe neuropsychomotor retardation known as Allan-Herndon-Dudley syndrome (AHDS). It is assumed that this is caused by a reduction in TH signaling in the developing brain during both intrauterine and postnatal developmental stages, and treatment remains understandably challenging. Given species differences in brain TH transporters and the limitations of studies in mice, we generated cerebral organoids (COs) using human induced pluripotent stem cells (iPSCs) from MCT8-deficient patients. MCT8-deficient COs exhibited (i) altered early neurodevelopment, resulting in smaller neural rosettes with thinner cortical units, (ii) impaired triiodothyronine (T3) transport in developing neural cells, as assessed through deiodinase-3-mediated T3 catabolism, (iii) reduced expression of genes involved in cerebral cortex development, and (iv) reduced T3 inducibility of TH-regulated genes. In contrast, the TH analogs 3,5-diiodothyropropionic acid and 3,3',5-triiodothyroacetic acid triggered normal responses (induction/repression of T3-responsive genes) in MCT8-deficient COs, constituting proof of concept that lack of T3 transport underlies the pathophysiology of AHDS and demonstrating the clinical potential for TH analogs to be used in treating patients with AHDS. MCT8-deficient COs represent a species-specific relevant preclinical model that can be utilized to screen drugs with potential benefits as personalized therapeutics for patients with AHDS.


Asunto(s)
Células Madre Pluripotentes Inducidas , Discapacidad Intelectual Ligada al Cromosoma X , Atrofia Muscular , Animales , Humanos , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular/genética , Hormonas Tiroideas
11.
Eur Thyroid J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963712

RESUMEN

Impaired sensitivity to thyroid hormones encompasses disorders with defective transport of hormones into cells, reduced hormone metabolism and resistance to hormone action. Mediated by heritable single gene defects, these rare conditions exhibit different patterns of discordant thyroid function associated with multisystem phenotypes. In this context, challenges include ruling out other causes of biochemical discordance, making a diagnosis using clinical features together with identification of pathogenic variants in causal genes and managing these rare disorders with a limited evidence base. For each condition, the present guidelines aim to inform clinical practice by summarising key clinical features and useful investigations, criteria for molecular genetic diagnosis and pathways for management and therapy. Specific, key recommendations were developed by combining the best research evidence available with the knowledge and clinical experience of panel members, to achieve a consensus.

12.
Nat Genet ; 56(5): 877-888, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714869

RESUMEN

Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.


Asunto(s)
Cromosomas Humanos Par 15 , Elementos de Facilitación Genéticos , MicroARNs , Repeticiones de Microsatélite , Mutación , Tirotropina , Humanos , MicroARNs/genética , Repeticiones de Microsatélite/genética , Cromosomas Humanos Par 15/genética , Femenino , Tirotropina/genética , Masculino , Glándula Tiroides/metabolismo , Animales , Primates/genética , Linaje
13.
J Pediatr Endocrinol Metab ; 26(1-2): 119-23, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457313

RESUMEN

A 10-year old child born to consanguineous parents presented with an extremely large goiter, a low free T4 level and free T4 index, and normal TSH concentration. The findings of undetectable thyroglobulin (TG) and low free T4, and an elevated free T3/free T4 ratio suggested the possibility of a defect in TG synthesis. Noteworthy aspects of this case were the extremely elevated thyroidal radioiodide uptake despite a normal TSH concentration and the fact that the reduction in the size of her goiter only occurred when her TSH was suppressed below the normal range. Gene sequencing revealed that the patient was homozygous for a donor splice site mutation in intron 30 (IVS30+1G>C). Isolation of RNA obtained from the thyroid gland by fine needle aspiration and sequencing of the TG cDNA confirmed the prediction that exon 30 was skipped, resulting in an in-frame loss of 46 amino acids.


Asunto(s)
Bocio Nodular/genética , Tiroglobulina/genética , Secuencia de Bases , Niño , Consanguinidad , Análisis Mutacional de ADN , Femenino , Bocio Nodular/diagnóstico , Bocio Nodular/patología , Humanos , Datos de Secuencia Molecular , Mutación Missense/fisiología , Tamaño de los Órganos/genética , Linaje , Fenotipo
14.
Commun Biol ; 6(1): 857, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591947

RESUMEN

The body temperature of mice is higher at night than during the day. We show here that global deletion of acid-sensing ion channel 1a (ASIC1a) results in lower body temperature during a part of the night. ASICs are pH sensors that modulate neuronal activity. The deletion of ASIC1a decreased the voluntary activity at night of mice that had access to a running wheel but did not affect their spontaneous activity. Daily rhythms of thyrotropin-releasing hormone mRNA in the hypothalamus and of thyroid-stimulating hormone ß mRNA in the pituitary, and of prolactin mRNA in the hypothalamus and pituitary were suppressed in ASIC1a-/- mice. The serum thyroid hormone levels were however not significantly changed by ASIC1a deletion. Our findings indicate that ASIC1a regulates activity and signaling in the hypothalamus and pituitary. This likely leads to the observed changes in body temperature by affecting the metabolism or energy expenditure.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Temperatura Corporal , Animales , Ratones , Canales Iónicos Sensibles al Ácido/genética , Metabolismo Energético/genética , Hipotálamo , ARN Mensajero
15.
J Clin Endocrinol Metab ; 108(10): e944-e948, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37149816

RESUMEN

CONTEXT: Pregnant women with mutations in the thyroid hormone receptor beta (THRB) gene expose their fetuses to high thyroid hormone (TH) levels shown to be detrimental to a normal fetus (NlFe) but not to an affected fetus (AfFe). However, no information is available about differences in placental TH regulators. OBJECTIVE: To investigate whether there are differences in placentas associated with a NlFe compared with an AfFe, we had the unique opportunity to study placentas from 2 pregnancies of the same woman with THRB mutation G307D. One placenta supported a NlFe while the other an AfFe. METHODS: Sections of placentas were collected and frozen at -80 °C after term delivery of a NlFe and an AfFe. Two placentas from healthy women of similar gestational age were also obtained. The fetal origin of the placental tissues was established by gDNA quantitation of genes on the X and Y chromosomes and THRB gene. Expression and enzymatic activity of deiodinases 2 and 3 were measured. Expression of following genes was also quantitated: MCT10, MCT8, LAT1, LAT2, THRB, THRA. RESULTS: The placenta carrying the AfFe exhibited a significant reduction of deiodinase 2 and 3 activities as well as the expression of the TH transporters MCT10, LAT1 and LAT2, and THRA. CONCLUSION: We present the first study of the effect of the fetal THRB genotype on the placenta. Though limited by virtue of the rarity of THRB mutations and sample availability, we show that the fetal THRB genotype influences the levels of TH regulators in the placenta.


Asunto(s)
Genes erbA , Placenta , Femenino , Embarazo , Humanos , Placenta/metabolismo , Receptores beta de Hormona Tiroidea , Hormonas Tiroideas/metabolismo , Feto/metabolismo , Genotipo
16.
Thyroid ; 33(2): 261-266, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36633921

RESUMEN

Background: Congenital hypothyroidism due to defects in iodotyrosine deiodinase has variable phenotypes and can present as hypothyroid or with normal thyroid testing. Methods: Whole exome sequencing was performed in individuals from two families originating from different regions of Sudan. Mass spectrometry of urine and serum iodotyrosines was performed on subjects from both families. Results: A novel iodotyrosine deiodinase (IYD) mutation (c.835C>T; R279C) was identified in individuals from two Sudanese families inherited as autosomal recessive. The mutation was identified by multiple in silica analyses to likely be detrimental. Serum and urine monoiodotyrosine (MIT) and diiodotyrosine (DIT) were markedly elevated in the homozygous subjects. Conclusion: Measurement of serum and urine DIT and MIT was more sensitive than that of urine iodine or serum thyroid function tests to determine the effect of the IYD mutation.


Asunto(s)
Hipotiroidismo Congénito , Diyodotirosina , Mutación , Humanos , Hipotiroidismo Congénito/genética , Diyodotirosina/genética , Yoduro Peroxidasa/genética , Monoyodotirosina/genética
17.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345654

RESUMEN

Defects in endoplasmic reticulum (ER) proteostasis have been linked to diseases in multiple organ systems. Here we examined the impact of perturbation of ER proteostasis in mice bearing thyrocyte-specific knockout of either HRD1 (to disable ER-associated protein degradation [ERAD]) or ATG7 (to disable autophagy) in the absence or presence of heterozygous expression of misfolded mutant thyroglobulin (the most highly expressed thyroid gene product, synthesized in the ER). Misfolding-inducing thyroglobulin mutations are common in humans but are said to yield only autosomal-recessive disease - perhaps because misfolded thyroglobulin protein might undergo disposal by ERAD or ER macroautophagy. We find that as single defects, neither ERAD, nor autophagy, nor heterozygous thyroglobulin misfolding altered circulating thyroxine levels, and neither defective ERAD nor defective autophagy caused any gross morphological change in an otherwise WT thyroid gland. However, heterozygous expression of misfolded thyroglobulin itself triggered significant ER stress and individual thyrocyte death while maintaining integrity of the surrounding thyroid epithelium. In this context, deficiency of ERAD (but not autophagy) resulted in patchy whole-follicle death with follicular collapse and degeneration, accompanied by infiltration of bone marrow-derived macrophages. Perturbation of thyrocyte ER proteostasis is thus a risk factor for both cell death and follicular demise.


Asunto(s)
Tiroglobulina , Glándula Tiroides , Humanos , Animales , Ratones , Tiroglobulina/genética , Proteostasis , Autofagia , Retículo Endoplásmico
18.
Thyroid ; 33(6): 752-761, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879468

RESUMEN

Background: Iodine is required for the synthesis of thyroid hormone (TH), but its natural availability is limited. Dehalogenase1 (Dehal1) recycles iodine from mono- and diiodotyrosines (MIT, DIT) to sustain TH synthesis when iodine supplies are scarce, but its role in the dynamics of storage and conservation of iodine is unknown. Methods: Dehal1-knockout (Dehal1KO) mice were generated by gene trapping. The timing of expression and distribution was investigated by X-Gal staining and immunofluorescence using recombinant Dehal1-beta-galactosidase protein produced in fetuses and adult mice. Adult Dehal1KO and wild-type (Wt) animals were fed normal and iodine-deficient diets for 1 month, and plasma, urine, and tissues were isolated for analyses. TH status was monitored, including thyroxine, triiodothyronine, MIT, DIT, and urinary iodine concentration (UIC) using a novel liquid chromatography with tandem mass spectrometry method and the Sandell-Kolthoff (S-K) technique throughout the experimental period. Results: Dehal1 is highly expressed in the thyroid and is also present in the kidneys, liver, and, unexpectedly, the choroid plexus. In vivo transcription of Dehal1 was induced by iodine deficiency only in the thyroid tissue. Under normal iodine intake, Dehal1KO mice were euthyroid, but they showed negative iodine balance due to a continuous loss of iodotyrosines in the urine. Counterintuitively, the UIC of Dehal1KO mice is twofold higher than that of Wt mice, indicating that S-K measures both inorganic and organic iodine. Under iodine restriction, Dehal1KO mice rapidly develop profound hypothyroidism, while Wt mice remain euthyroid, suggesting reduced retention of iodine in the thyroids of Dehal1KO mice. Urinary and plasma iodotyrosines were continually elevated throughout the life cycles of Dehal1KO mice, including the neonatal period, when pups were still euthyroid. Conclusions: Plasma and urine iodotyrosine elevation occurs in Dehal1-deficient mice throughout life. Therefore, measurement of iodotyrosines predicts an eventual iodine shortage and development of hypothyroidism in the preclinical phase. The prompt establishment of hypothyroidism upon the start of iodine restriction suggests that Dehal1KO mice have low iodine reserves in their thyroid glands, pointing to defective capacity for iodine storage.


Asunto(s)
Hipotiroidismo , Yodo , Ratones , Animales , Monoyodotirosina/metabolismo , Ratones Noqueados , Yoduro Peroxidasa/genética , Hipotiroidismo/genética , Biomarcadores , Tiroxina , Yodo/metabolismo
19.
Thyroid ; 32(8): 1000-1002, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611983

RESUMEN

We report a 10-month-old girl with familial congenital hypothyroidism harboring a novel heterozygous pathogenic variant in the paired DNA-binding domain of PAX8 (NM_003466:c.110T>C:p.Leu37Pro). Genotype-phenotype correlation revealed complete penetrance of this PAX8 defect in this family, in which the affected father and half-brother carry the same mutation. This deleterious variant has not been reported in any of the available databases [MAFgnomAD = 0, dbSNP (-)], and the amino acid leucine at position 37 is highly conserved across species. Establishing the molecular diagnosis expands our knowledge on the cause of thyroid dysgenesis and provides a guide for counseling and early treatment.


Asunto(s)
Hipotiroidismo Congénito , Disgenesias Tiroideas , Hipotiroidismo Congénito/genética , Femenino , Humanos , Lactante , Masculino , Mutación , Factor de Transcripción PAX8/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Disgenesias Tiroideas/genética
20.
Am J Clin Pathol ; 157(2): 156-158, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34542585

RESUMEN

OBJECTIVES: Thyroid hormone analog 3,5,3'-triiodothyroacetic acid (TRIAC) is effective in reducing the hypermetabolism in monocarboxylate transporter 8 (MCT8)-deficient individuals. Because of the structural similarity between TRIAC and 3,3',5'-triiodothyronine (T3), we sought to investigate the degree of cross-reactivity of TRIAC with various commercially available total and free T3 assays. METHODS: Varying concentrations (50-1,000 ng/dL) of TRIAC (Sigma Aldrich) were added to pooled serum and assayed for total T3 (TT3) and free T3 (FT3) on the following platforms: e602 (Roche Diagnostics), Architect (Abbott Diagnostics), Centaur (Siemens Healthcare Diagnostics), IMMULITE (Siemens Healthcare Diagnostics), DxI (Beckman Coulter), and Vitros (Ortho Clinical Diagnostics). TT3 competition assay with TRIAC was performed by adding increasing amounts of T3 to pooled serum samples that contained a constant concentration of TRIAC (250 ng/dL). RESULTS: Significant overestimation of TT3 and FT3 assays were observed across all platforms corresponding to increasing concentrations of TRIAC. The TRIAC effect at 250 ng/dL showed a constant interference of approximately 190 ng/dL TT3. CONCLUSIONS: All commercial TT3 and FT3 assays tested in this work cross-react significantly with TRIAC. Therefore, patients undergoing TRIAC therapy should have T3 hormone response monitored using alternative nonimmunoassay-based methods to avoid misinterpretation of thyroid function profiles.


Asunto(s)
Pruebas de Función de la Tiroides , Triyodotironina , Humanos , Inmunoensayo , Glándula Tiroides , Triyodotironina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA