Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(12): 127701, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281866

RESUMEN

We demonstrate the trapping of electrons propagating ballistically at far-above-equilibrium energies in GaAs/AlGaAs heterostructures in high magnetic field. We find low-loss transport along a gate-modified mesa edge in contrast to an effective decay of excess energy for the loop around a neighboring, mesa-confined node, enabling high-fidelity trapping. Measuring the full counting statistics via single-charge detection yields the trapping (and escape) probabilities of electrons scattered (and excited) within the node. Energetic and arrival-time distributions of captured electron wave packets are characterized by modulating tunnel barrier transmission.

2.
Nat Commun ; 12(1): 285, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436588

RESUMEN

Mesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe. Additionally, contributions of correlated noise, induced environmentally or by memory, are revealed as limits of achievable fidelity by statistical consistency analysis of the full distribution of error counts. Applying this methodology to a high-fidelity implementation of on-demand transfer of electrons in quantum dots we are able to utilize the high precision of charge counting to robustly estimate the error rate of the full circuit and its variability due to noise in the environment. As the clock frequency of the circuit is increased, the random walk reveals a memory effect. This benchmark contributes towards a rigorous metrology of quantum circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA