Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(5): H1873-H1886, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739154

RESUMEN

Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development. Pregnant mice were housed in hypoxia beginning at embryonic day 16. Pups stayed in hypoxia until postnatal day (P)8 when cardiac development is nearly complete. Global gene expression was quantified at P8 and at P30, after recovering in normoxia. Phenotypic testing included electrocardiogram, echocardiogram, and ex vivo electrophysiology study. Hypoxic P8 animals were 47% smaller than controls with preserved heart size. Gene expression was grossly altered by hypoxia at P8 (1,427 genes affected), but normalized after recovery (P30). Electrocardiograms revealed bradycardia and slowed conduction velocity in hypoxic animals at P8, with noticeable resolution after recovery (P30). Notable differences that persisted after recovery (P30) included a 65% prolongation in ventricular effective refractory period, sinus node dysfunction, 23% reduction in ejection fraction, and 16% reduction in fractional shortening in animals exposed to hypoxia. We investigated the impact of chronic hypoxia on the developing heart. Perinatal hypoxia was associated with changes in gene expression and cardiac function. Persistent changes to the electrophysiological substrate and contractile function warrant further investigation and may contribute to adverse outcomes observed in the cyanotic CHD population.NEW & NOTEWORTHY We utilized a new mouse model of chronic perinatal hypoxia to simulate the hypoxic myocardial conditions present in cyanotic congenital heart disease. Hypoxia caused numerous abnormalities in cardiomyocyte gene expression, the electrophysiologic substrate of the heart, and contractile function. Taken together, alterations observed in the neonatal period suggest delayed cardiac development immediately following hypoxia.


Asunto(s)
Cianosis/etiología , Corazón Fetal/crecimiento & desarrollo , Cardiopatías Congénitas/etiología , Hipoxia/complicaciones , Factores de Edad , Animales , Animales Recién Nacidos , Enfermedad Crónica , Cianosis/genética , Cianosis/metabolismo , Cianosis/fisiopatología , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/metabolismo , Hipoxia Fetal/complicaciones , Hipoxia Fetal/genética , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Organogénesis , Embarazo , Efectos Tardíos de la Exposición Prenatal
2.
Am J Physiol Heart Circ Physiol ; 318(2): H354-H365, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31886723

RESUMEN

Rodent models are frequently employed in cardiovascular research, yet our understanding of pediatric cardiac physiology has largely been deduced from more simplified two-dimensional cell studies. Previous studies have shown that postnatal development includes an alteration in the expression of genes and proteins involved in cell coupling, ion channels, and intracellular calcium handling. Accordingly, we hypothesized that postnatal cell maturation is likely to lead to dynamic alterations in whole heart electrophysiology and calcium handling. To test this hypothesis, we employed multiparametric imaging and electrophysiological techniques to quantify developmental changes from neonate to adult. In vivo electrocardiograms were collected to assess changes in heart rate, variability, and atrioventricular conduction (Sprague-Dawley rats). Intact, whole hearts were transferred to a Langendorff-perfusion system for multiparametric imaging (voltage, calcium). Optical mapping was performed in conjunction with an electrophysiology study to assess cardiac dynamics throughout development. Postnatal age was associated with an increase in the heart rate (181 ± 34 vs. 429 ± 13 beats/min), faster atrioventricular conduction (94 ± 13 vs. 46 ± 3 ms), shortened action potentials (APD80: 113 ± 18 vs. 60 ± 17 ms), and decreased ventricular refractoriness (VERP: 157 ± 45 vs. 57 ± 14 ms; neonatal vs. adults, means ± SD, P < 0.05). Calcium handling matured with development, resulting in shortened calcium transient durations (168 ± 18 vs. 117 ± 14 ms) and decreased propensity for calcium transient alternans (160 ± 18- vs. 99 ± 11-ms cycle length threshold; neonatal vs. adults, mean ± SD, P < 0.05). Results of this study can serve as a comprehensive baseline for future studies focused on pediatric disease modeling and/or preclinical testing.NEW & NOTEWORTHY This is the first study to assess cardiac electrophysiology and calcium handling throughout postnatal development, using both in vivo and whole heart models.


Asunto(s)
Envejecimiento/fisiología , Calcio/metabolismo , Calcio/fisiología , Fenómenos Electrofisiológicos/fisiología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Potenciales de Acción/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Circulación Coronaria/fisiología , Electrocardiografía , Fenómenos Electrofisiológicos/efectos de los fármacos , Corazón/efectos de los fármacos , Sistema de Conducción Cardíaco/crecimiento & desarrollo , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca/fisiología , Técnicas In Vitro , Isoproterenol/farmacología , Perfusión , Ratas , Ratas Sprague-Dawley
3.
Toxicol Sci ; 183(1): 214-226, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34240201

RESUMEN

Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, whereas heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogs are being explored as replacements for BPA. This study aimed to examine the direct effects of BPA on cardiac electrophysiology compared with recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F). Whole-cell voltage-clamp recordings were performed on cell lines transfected to express the voltage-gated sodium channel (Nav1.5), L-type voltage-gated calcium channel (Cav1.2), or the rapidly activating delayed rectifier potassium channel (hERG). Cardiac electrophysiology parameters were measured using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole rat heart preparations. BPA was the most potent inhibitor of fast/peak (INa-P) and late (INa-L) sodium channel (IC50 = 55.3, 23.6 µM, respectively), L-type calcium channel (IC50 = 30.8 µM), and hERG channel current (IC50 = 127 µM). Inhibitory effects on L-type calcium channels were supported by microelectrode array recordings, which revealed a shortening of the extracellular field potential (akin to QT interval). BPA and BPF exposures slowed atrioventricular (AV) conduction and increased AV node refractoriness in isolated rat heart preparations, in a dose-dependent manner (BPA: +9.2% 0.001 µM, +95.7% 100 µM; BPF: +20.7% 100 µM). BPS did not alter any of the cardiac electrophysiology parameters tested. Results of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, whereas BPS is markedly less potent. Additional studies are necessary to fully elucidate the safety profile of bisphenol analogs on the heart.


Asunto(s)
Compuestos de Bencidrilo , Técnicas Electrofisiológicas Cardíacas , Animales , Compuestos de Bencidrilo/toxicidad , Humanos , Fenoles , Ratas , Sulfonas
4.
J Am Heart Assoc ; 9(21): e017748, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33086931

RESUMEN

Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood-banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff-heart preparations (rat) or human induced pluripotent stem cell-derived cardiomyocytes. Cardiac parameters remained stable following exposure to "fresh" supernatant from red blood cell units (day 7: 5.8±0.2 mM K+), but older blood products (day 40: 9.3±0.3 mM K+) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell-derived cardiomyocytes after exposure to older supernatant from red blood cell units (-75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM K+). Conclusions This is the first study to demonstrate that "older" blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.


Asunto(s)
Arritmias Cardíacas/etiología , Recolección de Muestras de Sangre/efectos adversos , Transfusión de Eritrocitos/efectos adversos , Hiperpotasemia/etiología , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Eritrocitos , Humanos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos/fisiología , Ratas , Factores de Tiempo
5.
J Vis Exp ; (153)2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31762469

RESUMEN

Small animal models are most commonly used in cardiovascular research due to the availability of genetically modified species and lower cost compared to larger animals. Yet, larger mammals are better suited for translational research questions related to normal cardiac physiology, pathophysiology, and preclinical testing of therapeutic agents. To overcome the technical barriers associated with employing a larger animal model in cardiac research, we describe an approach to measure physiological parameters in an isolated, Langendorff-perfused piglet heart. This approach combines two powerful experimental tools to evaluate the state of the heart: electrophysiology (EP) study and simultaneous optical mapping of transmembrane voltage and intracellular calcium using parameter sensitive dyes (RH237, Rhod2-AM). The described methodologies are well suited for translational studies investigating the cardiac conduction system, alterations in action potential morphology, calcium handling, excitation-contraction coupling and the incidence of cardiac alternans or arrhythmias.


Asunto(s)
Electrofisiología Cardíaca/métodos , Preparación de Corazón Aislado , Fenómenos Ópticos , Potenciales de Acción , Animales , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Espacio Intracelular/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA