Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 147(3): 936-948, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787146

RESUMEN

Blood-based biomarkers have been extensively evaluated for their diagnostic potential in Alzheimer's disease. However, their relative prognostic and monitoring capabilities for cognitive decline, amyloid-ß (Aß) accumulation and grey matter loss in cognitively unimpaired elderly require further investigation over extended time periods. This prospective cohort study in cognitively unimpaired elderly [n = 185, mean age (range) = 69 (53-84) years, 48% female] examined the prognostic and monitoring capabilities of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), Aß1-42/Aß1-40 and phosphorylated tau (pTau)181 through their quantification in serum. All participants underwent baseline Aß-PET, MRI and blood sampling as well as 2-yearly cognitive testing. A subset additionally underwent Aß-PET (n = 109), MRI (n = 106) and blood sampling (n = 110) during follow-up [median time interval (range) = 6.1 (1.3-11.0) years]. Matching plasma measurements were available for Aß1-42/Aß1-40 and pTau181 (both n = 140). Linear mixed-effects models showed that high serum GFAP and NfL predicted future cognitive decline in memory (ßGFAP×Time = -0.021, PFDR = 0.007 and ßNfL×Time = -0.031, PFDR = 0.002) and language (ßGFAP×Time = -0.021, PFDR = 0.002 and ßNfL×Time = -0.018, PFDR = 0.03) domains. Low serum Aß1-42/Aß1-40 equally but independently predicted memory decline (ßAß1-42/Aß1-40×Time = -0.024, PFDR = 0.02). Whole-brain voxelwise analyses revealed that low Aß1-42/Aß1-40 predicted Aß accumulation within the precuneus and frontal regions, high GFAP and NfL predicted grey matter loss within hippocampal regions and low Aß1-42/Aß1-40 predicted grey matter loss in lateral temporal regions. Serum GFAP, NfL and pTau181 increased over time, while Aß1-42/Aß1-40 decreased only in Aß-PET-negative elderly. NfL increases associated with declining memory (ßNfLchange×Time = -0.030, PFDR = 0.006) and language (ßNfLchange×Time = -0.021, PFDR = 0.02) function and serum Aß1-42/Aß1-40 decreases associated with declining language function (ßAß1-42/Aß1-40×Time = -0.020, PFDR = 0.04). GFAP increases associated with Aß accumulation within the precuneus and NfL increases associated with grey matter loss. Baseline and longitudinal serum pTau181 only associated with Aß accumulation in restricted occipital regions. In head-to-head comparisons, serum outperformed plasma Aß1-42/Aß1-40 (ΔAUC = 0.10, PDeLong, FDR = 0.04), while both plasma and serum pTau181 demonstrated poor performance to detect asymptomatic Aß-PET positivity (AUC = 0.55 and 0.63, respectively). However, when measured with a more phospho-specific assay, plasma pTau181 detected Aß-positivity with high performance (AUC = 0.82, PDeLong, FDR < 0.007). In conclusion, serum GFAP, NfL and Aß1-42/Aß1-40 are valuable prognostic and/or monitoring tools in asymptomatic stages providing complementary information in a time- and pathology-dependent manner.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Anciano , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Estudios Prospectivos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Biomarcadores , Cognición , Tomografía de Emisión de Positrones
2.
Eur J Nucl Med Mol Imaging ; 49(11): 3772-3786, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35522322

RESUMEN

PURPOSE: End-of-life studies have validated the binary visual reads of 18F-labeled amyloid PET tracers as an accurate tool for the presence or absence of increased neuritic amyloid plaque density. In this study, the performance of a support vector machine (SVM)-based classifier will be tested against pathological ground truths and its performance determined in cognitively healthy older adults. METHODS: We applied SVM with a linear kernel to an 18F-Flutemetamol end-of-life dataset to determine the regions with the highest feature weights in a data-driven manner and to compare between two different pathological ground truths: based on neuritic amyloid plaque density or on amyloid phases, respectively. We also trained and tested classifiers based on the 10% voxels with the highest amplitudes of feature weights for each of the two neuropathological ground truths. Next, we tested the classifiers' diagnostic performance in the asymptomatic Alzheimer's disease (AD) phase, a phase of interest for future drug development, in an independent dataset of cognitively intact older adults, the Flemish Prevent AD Cohort-KU Leuven (F-PACK). A regression analysis was conducted between the Centiloid (CL) value in a composite volume of interest (VOI), as index for amyloid load, and the distance to the hyperplane for each of the two classifiers, based on the two pathological ground truths. A receiver operating characteristic analysis was also performed to determine the CL threshold that optimally discriminates between neuritic amyloid plaque positivity versus negativity, or amyloid phase positivity versus negativity, within F-PACK. RESULTS: The classifiers yielded adequate specificity and sensitivity within the end-of-life dataset (neuritic amyloid plaque density classifier: specificity of 90.2% and sensitivity of 83.7%; amyloid phase classifier: specificity of 98.4% and sensitivity of 84.0%). The regions with the highest feature weights corresponded to precuneus, caudate, anteromedial prefrontal, and also posterior inferior temporal and inferior parietal cortex. In the cognitively normal cohort, the correlation coefficient between CL and distance to the hyperplane was -0.66 for the classifier trained with neuritic amyloid plaque density, and -0.88 for the classifier trained with amyloid phases. This difference was significant. The optimal CL cut-off for discriminating positive versus negative scans was CL = 48-51 for the different classifiers (area under the curve (AUC) = 99.9%), except for the classifier trained with amyloid phases and based on the 10% voxels with highest feature weights. There the cut-off was CL = 26 (AUC = 99.5%), which closely matched the CL threshold for discriminating phases 0-2 from 3-5 based on the end-of-life dataset and the neuropathological ground truth. DISCUSSION: Among a set of neuropathologically validated classifiers trained with end-of-life cases, transfer to a cognitively normal population works best for a classifier trained with amyloid phases and using only voxels with the highest amplitudes of feature weights.


Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Amiloide , Compuestos de Anilina , Benzotiazoles , Muerte , Humanos , Aprendizaje Automático , Placa Amiloide/diagnóstico por imagen , Tomografía de Emisión de Positrones
3.
Brain ; 144(12): 3756-3768, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34534284

RESUMEN

Language dysfunction is common in Alzheimer's disease. There is increasing interest in the preclinical or asymptomatic phase of Alzheimer's disease. Here we examined in 35 cognitively intact older adults (age range 52-78 years at baseline, 17 male) in a longitudinal study design the association between accumulation of amyloid over a 5-6-year period, measured using PET, and functional changes in the language network measured over the same time period using task-related functional MRI. In the same participants, we also determined the association between the longitudinal functional MRI changes and a cross-sectional measure of tau load as measured with 18F-AV1451 PET. As predicted, the principal change occurred in posterior temporal cortex. In the cortex surrounding the right superior temporal sulcus, the response amplitude during the associative-semantic versus visuo-perceptual task increased over time as amyloid load accumulated (Pcorrected = 0.008). In a whole-brain voxel-wise analysis, amyloid accumulation was also associated with a decrease in response amplitude in the left inferior frontal sulcus (Pcorrected = 0.009) and the right dorsomedial prefrontal cortex (Pcorrected = 0.005). In cognitively intact older adults, cross-sectional tau load was not associated with longitudinal changes in functional MRI response amplitude. Our findings confirm the central role of the neocortex surrounding the posterior superior temporal sulcus as the area of predilection within the language network in the earliest stages of Alzheimer's disease. Amyloid accumulation has an impact on cognitive brain circuitry in the asymptomatic phase of Alzheimer's disease.


Asunto(s)
Envejecimiento/patología , Péptidos beta-Amiloides , Lenguaje , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Anciano , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Lóbulo Temporal/patología
4.
Front Aging Neurosci ; 14: 1010765, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275007

RESUMEN

Introduction: Alzheimer's disease is one of the great challenges in the coming decades, and despite great efforts, a widely effective disease-modifying therapy in humans remains elusive. One particular promising non-pharmacological therapy that has received increased attention in recent years is based on the Gamma ENtrainment Using Sensory stimulation (GENUS), a high-frequency neural response elicited by a visual and/or auditory stimulus at 40 Hz. While this has shown to be effective in animal models, studies on human participants have reported varying success. The current work hypothesizes that the varying success in humans is due to differences in cognitive workload during the GENUS sessions. Methods: We recruited a cohort of 15 participants who underwent a scalp-EEG recording as well as one epilepsy patient who was implanted with 50 subdural surface electrodes over temporo-occipital and temporo-basal cortex and 14 depth contacts that targeted the hippocampus and insula. All participants completed several GENUS sessions, in each of which a different cognitive task was performed. Results: We found that the inclusion of a cognitive task during the GENUS session not only has a positive effect on the strength and extent of the gamma entrainment, but also promotes the propagation of gamma entrainment to additional neural areas including deep ones such as hippocampus which were not recruited when no cognitive task was required from the participants. The latter is of particular interest given that the hippocampal complex is considered to be one of the primary targets for AD therapies. Discussion: This work introduces a possible improvement strategy for GENUS therapy that might contribute to increasing the efficacy of the therapy or shortening the time needed for the positive outcome.

5.
Ann Clin Transl Neurol ; 9(5): 734-746, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35502634

RESUMEN

OBJECTIVE: Plasma phosphorylated-tau-181 (p-tau181) reliably detects clinical Alzheimer's disease (AD) as well as asymptomatic amyloid-ß (Aß) pathology, but is consistently quantified with assays using antibody AT270, which cross-reacts with p-tau175. This study investigates two novel phospho-specific assays for plasma p-tau181 and p-tau231 in clinical and asymptomatic AD. METHODS: Plasma p-tau species were quantified with Simoa in 44 AD patients, 40 spouse controls and an independent cohort of 151 cognitively unimpaired (CU) elderly who underwent Aß-PET. Simoa plasma Aß42 measurements were available in a CU subset (N = 69). Receiver operating characteristics and Aß-PET associations were used to evaluate biomarker validity. RESULTS: The novel plasma p-tau181 and p-tau231 assays did not show cross-reactivity. Plasma p-tau181 accurately detected clinical AD (area under the curve (AUC) = 0.98, 95% CI 0.95-1.00) as well as asymptomatic Aß pathology (AUC = 0.84, 95% CI 0.76-0.92), while plasma p-tau231 did not (AUC = 0.74, 95% CI 0.63-0.85 and 0.61, 95% CI 0.52-0.71, respectively). Plasma p-tau181, but not p-tau231, detected asymptomatic Aß pathology more accurately than age, sex and APOE combined (AUC = 0.64). In asymptomatic elderly, correlations between plasma p-tau181 and Aß pathology were observed throughout the cerebral cortex (ρ = 0.40, p < 0.0001), with focal associations within AD-vulnerable regions, particularly the precuneus. The plasma Aß42/p-tau181 ratio did not reflect asymptomatic Aß pathology better than p-tau181 alone. INTERPRETATION: The novel plasma p-tau181 assay is an accurate tool to detect clinical as well as asymptomatic AD and provides a phospho-specific alternative to currently employed immunoassays.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Humanos , Proteínas tau
6.
Alzheimers Dement (N Y) ; 8(1): e12227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35229019

RESUMEN

INTRODUCTION: The bridging integrator 1(BIN1) rs744373 risk polymorphism has been linked to increased [18F]AV1451 signal in non-demented older adults (ie., mild cognitive impairment [MCI] plus cognitively normal [CN] individuals). However, the association of BIN1 with in vivo tau, amyloid beta (Aß) burden, and cognitive impairment in the asymptomatic stage of Alzheimer's disease (AD) remains unknown. METHODS: The BIN1 effect on [18F]AV1451 binding was evaluated in 59 cognitively normal (CN) participants (39% apolipoprotein E [APOE ε4]) from the Flemish Prevent AD Cohort KU Leuven (F-PACK), as well as in 66 Alzheimer's Disease Neuroimaging Initiative (ADNI) CN participants, using voxelwise and regional statistics. For comparison, 52 MCI patients from ADNI were also studied. RESULTS: Forty-four percent of F-PACK participants were BIN1 rs744373 risk-allele carriers, 21% showed high amyloid burden, and 8% had elevated [18F]AV1451 binding. In ADNI, 53% and 50% of CNs and MCIs, respectively, carried the BIN1 rs744373 risk-allele. Amyloid positivity was present in 23% of CNs and 51% of MCIs, whereas 2% of CNs and 35% of MCIs showed elevated [18F]AV1451 binding. There was no significant effect of BIN1 on voxelwise or regional [18F]AV1451 in F-PACK or ADNI CNs, or in the pooled CN sample. No significant association between BIN1 and [18F]AV1451 was obtained in ADNI MCI patients. However, in the MCI group, numerically higher [18F]AV1451 binding was observed in the BIN1 risk-allele group compared to the BIN1 normal group in regions corresponding to more progressed tau pathology. DISCUSSION: We could not confirm the association between BIN1 rs744373 risk-allele and elevated [18F]AV1451 signal in CN older adults or MCI. Numerically higher [18F]AV1451 binding was observed, however, in the MCI BIN1 risk-allele group, indicating that the previously reported positive effect may be confounded by group. Therefore, when studying how the BIN1 risk polymorphism influences AD pathogenesis, a distinction should be made between asymptomatic, MCI, and dementia stages of AD.

7.
Alzheimers Res Ther ; 14(1): 138, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151568

RESUMEN

BACKGROUND: Early detection of individuals at risk for Alzheimer's disease (AD) is highly important. Amyloid accumulation is an early pathological AD event, but the genetic association with known AD risk variants beyond the APOE4 effect is largely unknown. We investigated the association between different AD polygenic risk scores (PRS) and amyloid accumulation in the Flemish Prevent AD Cohort KU Leuven (F-PACK). METHODS: We calculated PRS with and without the APOE region in 90 cognitively healthy F-PACK participants (baseline age 67.8 (52-80) years, 41 APOE4 carriers), with baseline and follow-up amyloid-PET (time interval 6.1 (3.4-10.9) years). Individuals were genotyped using Illumina GSA and imputed. PRS were calculated using three p-value thresholds (pT) for variant inclusion: 5 × 10-8, 1 × 10-5, and 0.1, based on the stage 1 summary statistics from Kunkle et al. (Nat Genet 51:414-30, 2019). Linear regression models determined if these PRS predicted amyloid accumulation. RESULTS: A score based on PRS excluding the APOE region at pT = 5 × 10-8 plus the weighted sum of the two major APOE variants (rs429358 and rs7412) was significantly associated with amyloid accumulation (p = 0.0126). The two major APOE variants were also significantly associated with amyloid accumulation (p = 0.0496). The other PRS were not significant. CONCLUSIONS: Specific PRS are associated with amyloid accumulation in the asymptomatic phase of AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Apolipoproteína E4/genética , Humanos , Factores de Riesgo
8.
J Exp Med ; 215(4): 1047-1058, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29483128

RESUMEN

One of the hallmarks of Alzheimer's disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-ß (Aß) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aß in the brain. In addition to influencing Aß metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aß morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque-associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.


Asunto(s)
Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Microglía/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/inmunología , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/inmunología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apolipoproteínas E/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Transgénicos , Microglía/inmunología , Microglía/patología , Placa Amiloide/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA