Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(10): 774-787, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38018436

RESUMEN

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Asunto(s)
Apolipoproteína A-I , Enfermedades Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Enfermedades Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
2.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174935

RESUMEN

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Asunto(s)
Hepacivirus , Hepatitis C , Evasión Inmune , Lipoproteínas HDL , Proteínas del Envoltorio Viral , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células HEK293
3.
J Allergy Clin Immunol ; 153(4): 1010-1024.e14, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38092139

RESUMEN

RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.


Asunto(s)
Asma , Lipoproteínas HDL , Humanos , Animales , Ratones , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacología , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Inflamación/metabolismo , Obesidad , Alérgenos
4.
Lipids Health Dis ; 23(1): 43, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331834

RESUMEN

BACKGROUND: The accurate measurement of Low-density lipoprotein cholesterol (LDL-C) is critical in the decision to utilize the new lipid-lowering therapies like PCSK9-inhibitors (PCSK9i) for high-risk cardiovascular disease patients that do not achieve sufficiently low LDL-C on statin therapy. OBJECTIVE: To improve the estimation of low LDL-C by developing a new equation that includes apolipoprotein B (apoB) as an independent variable, along with the standard lipid panel test results. METHODS: Using ß-quantification (BQ) as the reference method, which was performed on a large dyslipidemic population (N = 24,406), the following enhanced Sampson-NIH equation (eS LDL-C) was developed by least-square regression analysis: [Formula: see text] RESULTS: The eS LDL-C equation was the most accurate equation for a broad range of LDL-C values based on regression related parameters and the mean absolute difference (mg/dL) from the BQ reference method (eS LDL-C: 4.51, Sampson-NIH equation [S LDL-C]: 6.07; extended Martin equation [eM LDL-C]: 6.64; Friedewald equation [F LDL-C]: 8.3). It also had the best area-under-the-curve accuracy score by Regression Error Characteristic plots for LDL-C < 100 mg/dL (eS LDL-C: 0.953; S LDL-C: 0.920; eM LDL-C: 0.915; F LDL-C: 0.874) and was the best equation for categorizing patients as being below or above the 70 mg/dL LDL-C treatment threshold for adding new lipid-lowering drugs by kappa score analysis when compared to BQ LDL-C for TG < 800 mg/dL (eS LDL-C: 0.870 (0.853-0.887); S LDL-C:0.763 (0.749-0.776); eM LDL-C:0.706 (0.690-0.722); F LDL-C:0.687 (0.672-0.701). Approximately a third of patients with an F LDL-C < 70 mg/dL had falsely low test results, but about 80% were correctly reclassified as higher (≥ 70 mg/dL) by the eS LDL-C equation, making them potentially eligible for PCSK9i treatment. The M LDL-C and S LDL-C equations had less false low results below 70 mg/dL than the F LDL-C equation but reclassification by the eS LDL-C equation still also increased the net number of patients correctly classified. CONCLUSIONS: The use of the eS LDL-C equation as a confirmatory test improves the identification of high-risk cardiovascular disease patients, who could benefit from new lipid-lowering therapies but have falsely low LDL-C, as determined by the standard LDL-C equations used in current practice.


Asunto(s)
Enfermedades Cardiovasculares , Proproteína Convertasa 9 , Humanos , LDL-Colesterol , Proproteína Convertasa 9/genética , Enfermedades Cardiovasculares/tratamiento farmacológico , Hipolipemiantes , Triglicéridos
5.
Lipids Health Dis ; 23(1): 210, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965543

RESUMEN

BACKGROUND: Low-density lipoprotein cholesterol (LDL-C) is associated with atherosclerotic cardiovascular disease (ASCVD). Friedewald, Sampson, and Martin-Hopkins equations are used to calculate LDL-C. This study compares the impact of switching between these equations in a large geographically defined population. MATERIALS AND METHODS: Data for individuals who had a lipid panel ordered clinically between 2010 and 2019 were included. Comparisons were made across groups using the two-sample t-test or chi-square test as appropriate. Discordances between LDL measures based on clinically actionable thresholds were summarized using contingency tables. RESULTS: The cohort included 198,166 patients (mean age 54 years, 54% female). The equations perform similarly at the lower range of triglycerides but began to diverge at a triglyceride level of 125 mg/dL. However, at triglycerides of 175 mg/dL and higher, the Martin-Hopkins equation estimated higher LDL-C values than the Samson equation. This discordance was further exasperated at triglyceride values of 400 to 800 mg/dL. When comparing the Sampson and Friedewald equations, at triglycerides are below 175 mg/dL, 9% of patients were discordant at the 70 mg/dL cutpoint, whereas 42.4% were discordant when triglycerides are between 175 and 400 mg/dL. Discordance was observed at the clinically actionable LDL-C cutpoint of 190 mg/dL with the Friedewald equation estimating lower LDL-C than the other equations. In a high-risk subgroup (ASCVD risk score > 20%), 16.3% of patients were discordant at the clinical cutpoint of LDL-C < 70 mg/dL between the Sampson and Friedewald equations. CONCLUSIONS: Discordance at clinically significant LDL-C cutpoints in both the general population and high-risk subgroups were observed across the three equations. These results show that using different methods of LDL-C calculation or switching between different methods could have clinical implications for many patients.


Asunto(s)
LDL-Colesterol , Triglicéridos , Humanos , LDL-Colesterol/sangre , Femenino , Persona de Mediana Edad , Masculino , Triglicéridos/sangre , Anciano , Aterosclerosis/sangre , Adulto , Factores de Riesgo
6.
Eur Heart J ; 44(16): 1394-1407, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-36337032

RESUMEN

Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease.


Asunto(s)
Aterosclerosis , Lipoproteínas HDL , Animales , Humanos , Lipoproteínas HDL/metabolismo , Relevancia Clínica , Colesterol/metabolismo , HDL-Colesterol , Lipoproteínas , Aterosclerosis/metabolismo
7.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338310

RESUMEN

Lipoprotein X (LP-X) is an abnormal cholesterol-rich lipoprotein particle that accumulates in patients with cholestatic liver disease and familial lecithin-cholesterol acyltransferase deficiency (FLD). Because there are no high-throughput diagnostic tests for its detection, a proton nuclear magnetic resonance (NMR) spectroscopy-based method was developed for use on a clinical NMR analyzer commonly used for the quantification of lipoproteins and other cardiovascular biomarkers. The LP-X assay was linear from 89 to 1615 mg/dL (cholesterol units) and had a functional sensitivity of 44 mg/dL. The intra-assay coefficient of variation (CV) varied between 1.8 and 11.8%, depending on the value of LP-X, whereas the inter-assay CV varied between 1.5 and 15.4%. The assay showed no interference with bilirubin levels up to 317 mg/dL and was also unaffected by hemolysis for hemoglobin values up to 216 mg/dL. Samples were stable when stored for up to 6 days at 4 °C but were not stable when frozen. In a large general population cohort (n = 277,000), LP-X was detected in only 50 subjects. The majority of LP-X positive cases had liver disease (64%), and in seven cases, had genetic FLD (14%). In summary, we describe a new NMR-based assay for LP-X, which can be readily implemented for routine clinical laboratory testing.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Lipoproteína X , Colestasis/diagnóstico , Colesterol , Espectroscopía de Resonancia Magnética
8.
Curr Opin Lipidol ; 34(6): 259-266, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773930

RESUMEN

PURPOSE OF REVIEW: The triglyceride-rich apoB lipoprotein particles make up a minority of the apoB particles in plasma. They vary in size, in lipid, and in protein content. Most are small enough to enter the arterial wall and therefore most are atherogenic. But how important a contribution TRL particles make to the total risk created by the apoB lipoproteins remains controversial. A recent Mendelian randomization analysis determined that the cardiovascular risk related to the cholesterol within these apoB particles--the TRL cholesterol--was greater than--and independent of--the risk related to apoB. If correct, these observations have major clinical significance. RECENT FINDINGS: Accordingly, we have analyzed these results in detail. In our view, the independent strength of the association between TRL cholesterol and apoB with cardiovascular risk seems inconsistent with the biological connections between apoB and cholesterol as integral and highly correlated constituents of apoB particles. These results are also inconsistent with other lines of evidence such as the results of the fibrate randomized clinical trials. Moreover, we are also concerned with other aspects of the analysis. SUMMARY: We do not regard the issue as settled. However, this enquiry has led us to a fuller understanding of the determinants of the cholesterol content of the TRL apoB particles and the complex processing of cholesterol amongst the plasma lipoproteins.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Colesterol/metabolismo , Lipoproteínas , Triglicéridos , Apolipoproteínas B , Factores de Riesgo de Enfermedad Cardiaca
9.
Clin Chem ; 69(10): 1145-1154, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37624942

RESUMEN

BACKGROUND: The standard lipid panel forms the backbone of atherosclerotic cardiovascular disease risk assessment. Suboptimal analytical performance, along with biological variability, could lead to erroneous risk assessment and management decisions. The current National Cholesterol Education Program (NCEP) performance recommendations have remained unchanged for almost 3 decades despite improvements in assay technology. We investigated the potential extent of risk misclassification when the current recommendations are met and explored the impact of improving analytical performance goals. METHODS: We extracted lipid panel data for 8506 individuals from the NHANES database and used these to classify subjects into 4 risk groups as recommended by the 2018 US Multisociety guidelines. Analytical bias and imprecision, at the allowable limits, as well as biological variability, were introduced to the measured values to determine the impact on misclassification. Bias and imprecision were systematically reduced to determine the degree of improvement that may be achieved. RESULTS: Using the current performance recommendations, up to 10% of individuals were misclassified into a different risk group. Improving proportional bias by 1%, and fixing imprecision to 3% across all assays reduced misclassifications by up to 10%. The effect of biological variability can be reduced by taking the average of serial sample measurements. CONCLUSIONS: The current NCEP recommendations for analytical performance of lipid panel assays allow for an unacceptable degree of misclassification, leading to possible mismanagement of cardiovascular disease risk. Iteratively reducing allowable error can improve this.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/prevención & control , Encuestas Nutricionales , Factores de Riesgo , Colesterol , Medición de Riesgo
10.
Clin Chem ; 69(5): 456-469, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37000150

RESUMEN

BACKGROUND: Lipids play a central role in the pathogenesis of cardiovascular disease (CVD), a leading cause of morbidity and mortality worldwide. Plasma lipids and lipoproteins are routinely measured to help identify individuals at high risk of developing CVD and to monitor patients' response to therapy. The landscape of lipid testing is rapidly changing, including new ways to estimate traditional lipid parameters (e.g., low-density lipoprotein-cholesterol [LDL-C] calculations) and new lipid parameters that show superiority for risk prediction (e.g., non-high-density lipoprotein-cholesterol [non-HDL-C], apolipoprotein B [apoB], and lipoprotein a [Lp(a)]). CONTENT: Various national guidelines for managing dyslipidemia to prevent CVD are available, which primarily focus on LDL-C for identifying those at high risk and setting thresholds for optimal response to therapy. However, LDL-C can be calculated and measured in various ways, each with advantages and disadvantages. Importantly, the recently established Sampson-NIH LDL-C equation appears to be superior to preceding calculations, as is clear from the literature and in guidelines. There is now a shift towards using lipid parameters other than LDL-C, such as non-HDL-C, apoB, and Lp(a), to identify high-risk patients and/or establish treatment targets. SUMMARY: The goal of this review is to discuss the present and future of lipid testing for CVD risk assessment through describing various national clinical guidelines, critically reviewing methods to calculate and measure LDL-C and discussing the clinical utility of additional lipid parameters.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/prevención & control , LDL-Colesterol , Factores de Riesgo , Colesterol , Medición de Riesgo , Apolipoproteínas B , Lipoproteínas , Factores de Riesgo de Enfermedad Cardiaca , HDL-Colesterol
11.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889041

RESUMEN

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
12.
Lipids Health Dis ; 22(1): 19, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737730

RESUMEN

BACKGROUND: Lipoprotein subfraction concentrations have been shown to change as gestation progresses in resource-rich settings. The objective of the current study was to evaluate the impact of pregnancy on different-sized lipoprotein particle concentrations and compositions in a resource-poor setting. METHOD: Samples were collected from pregnant women in rural Gambia at enrollment (8-20 weeks), 20 weeks, and 30 weeks of gestation. Concentrations of different-sized high-density, low-density, and triglyceride-rich lipoprotein particles (HDL, LDL, and TRL, respectively) were measured by nuclear magnetic resonance in 126 pooled plasma samples from a subset of women. HDL was isolated and the HDL proteome evaluated using mass spectroscopy. Subfraction concentrations from women in The Gambia were also compared to concentrations in women in the U.S. in mid gestation. RESULTS: Total lipoprotein particles and all-sized TRL, LDL, and HDL particle concentrations increased during gestation, with the exception of medium-sized LDL and HDL particles which decreased. Subfraction concentrations were not associated with infant birth weights, though relationships were found between some lipoprotein subfraction concentrations in women with normal versus low birth weight infants (< 2500 kg). HDL's proteome also changed during gestation, showing enrichment in proteins associated with metal ion binding, hemostasis, lipid metabolism, protease inhibitors, proteolysis, and complement activation. Compared to women in the U.S., Gambian women had lower large- and small-sized LDL and HDL concentrations, but similar medium-sized LDL and HDL concentrations. CONCLUSIONS: Most lipoprotein subfraction concentrations increase throughout pregnancy in Gambian women and are lower in Gambian vs U.S. women, the exception being medium-sized LDL and HDL particle concentrations which decrease during gestation and are similar in both cohorts of women. The proteomes of HDL also change in ways to support gestation. These changes warrant further study to determine how a lack of change or different changes could impact negative pregnancy outcomes.


Asunto(s)
Lipoproteínas , Proteoma , Humanos , Femenino , Lactante , Embarazo , Gambia , Triglicéridos , Peso al Nacer , Lipoproteínas LDL
13.
Lipids Health Dis ; 22(1): 55, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106374

RESUMEN

BACKGROUND: Psoriasis (PSO) is a skin disorder with systemic inflammation and high coronary artery disease risk. A distinct lipid phenotype occurs in psoriasis, which is characterized by high plasma triglycerides (TGs) with typically normal or even low LDL-C. The extent to which cholesterol on LDL subfractions, such as small dense LDL-C (sdLDL-C), are associated with vulnerable coronary plaque characteristics in PSO remains elusive. METHODS: A recently developed equation for estimating sdLDL-C from the standard lipid panel was utilized in a PSO cohort (n = 200) with 4-year follow-up of 75 subjects. Coronary plaque burden was assessed by quantitative coronary computed tomography angiography (CCTA). Multivariate regression analyses were used for establishing associations and prognostic value of estimated sdLDL-C. RESULTS: Estimated sdLDL-C was positively associated with non-calcified burden (NCB) and fibro-fatty burden (FFB), which remained significant after multivariate adjustment for NCB (ß = 0.37; P = 0.050) and LDL-C adjustment for FFB (ß = 0.29; P < 0.0001). Of note, total LDL-C calculated by the Friedewald equation was not able to capture these associations in the study cohort. Moreover, in the regression modelling estimated sdLDL-C was significantly predicting necrotic burden progression over 4 years follow-up (P = 0.015), whereas LDL-C did not. Finally, small LDL particles (S-LDLP) and small HDL particles (S-HDLP), along with large and medium TG-rich lipoproteins (TRLPs) had the most significant positive correlation with estimated sdLDL-C. CONCLUSIONS: Estimated sdLDL-C has a stronger association than LDL-C with high-risk features of coronary atherosclerotic plaques in psoriasis patients. CLINICAL TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov . Unique identifiers: NCT01778569.


Asunto(s)
Placa Aterosclerótica , Psoriasis , Humanos , Placa Aterosclerótica/diagnóstico por imagen , LDL-Colesterol , Factores de Riesgo , Colesterol , Psoriasis/complicaciones
14.
Nanomedicine ; 48: 102646, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549559

RESUMEN

Synthetic high-density lipoproteins nanomedicine (sHDL) composed of apolipoprotein A-I (ApoA-I) mimetic peptides and lipids have shown very promising results for the treatment of various cardiovascular diseases. Numerous efforts have also been made to design different ApoA-I mimetic peptides to improve the potency of sHDL, especially the efficiency of reverse cholesterol transport. However, the way in which ApoA-I mimetic peptides affect the properties of sHDL, including stability, cholesterol efflux, cholesterol esterification, elimination in vivo, and the relationship of these properties, is still poorly understood. Revealing the effect of these factors on the potency of sHDL is important for the design of better ApoA-I mimetic peptides. In this study, three widely used ApoA-I mimetic peptides with different sequences, lengths, LCAT activation and lipid binding affinities were used for the preparation of sHDL and were evaluated in terms of physical/chemical properties, cholesterol efflux, cholesterol esterification, remodeling, and pharmacokinetics/pharmacodynamics. Our results showed that ApoA-I mimetic peptides with the highest cholesterol efflux and cholesterol esterification in vitro did not exhibit the highest cholesterol mobilization in vivo. Further analysis indicated that other factors, such as pharmacokinetics and remodeling of sHDL, need to be considered in order to predict the efficiency of cholesterol mobilization in vivo. Thus, our study highlights the importance of using the overall performance, rather than in vitro results alone, as the blueprint for the design and optimization of ApoA-I mimetic peptides.


Asunto(s)
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas HDL/química , Apolipoproteína A-I/farmacología , Apolipoproteína A-I/química , Péptidos/farmacología , Péptidos/química , Colesterol/química , Transporte Biológico
15.
J Lipid Res ; 63(1): 100160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902367

RESUMEN

A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.


Asunto(s)
Proteínas de Microfilamentos , Proteínas Musculares
16.
Clin Chem ; 68(10): 1302-1310, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35900196

RESUMEN

BACKGROUND: Estimation of atherosclerotic cardiovascular disease (ASCVD) risk is a key step in cardiovascular disease (CVD) prevention, but it requires entering additional risk factor information into a computer. We developed a simplified ASCVD risk score that can be automatically calculated by the clinical laboratory when a fasting standard lipid panel is reported. METHODS: Equations for an estimated ASCVD (eASCVD) risk score were developed for 4 race/sex groups (non-Hispanic White/Black, men/women), using the following variables: total cholesterol, high-density lipoprotein cholesterol, triglycerides, and age. The eASCVD score was derived using regression analysis to yield similar risk estimates as the standard ASCVD risk equations for non-diabetic individuals not on lipid-lowering therapy in the National Health and Nutrition Examination Survey (NHANES) (n = 6027). RESULTS: At a cutpoint of 7.5%/10-year, the eASCVD risk score had an overall sensitivity of 69.1% and a specificity of 97.5% for identifying statin-eligible patients with at least intermediate risk based on the standard risk score. By using the sum of other risk factors present (systolic blood pressure >130 mmHg, blood pressure medication use, and cigarette use), the overall sensitivity of the eASCVD score improved to 93.7%, with a specificity of 92.3%. Furthermore, it showed 90% concordance with the standard risk score in predicting cardiovascular events in the Atherosclerosis Risk in Communities (ARIC) study (n = 14 742). CONCLUSIONS: Because the automated eASCVD risk score can be computed for all patients with a fasting standard lipid panel, it could be used as an adjunctive tool for the primary prevention of ASCVD and as a decision aid for statin therapy.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Enfermedades Cardiovasculares/tratamiento farmacológico , Colesterol , Técnicas de Apoyo para la Decisión , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lipoproteínas HDL , Masculino , Encuestas Nutricionales , Medición de Riesgo , Factores de Riesgo , Triglicéridos
17.
Circ Res ; 126(1): 94-108, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623522

RESUMEN

RATIONALE: In black women, triglycerides are paradoxically normal in the presence of insulin resistance. This relationship may be explained by race-related differences in central adiposity and SCD (stearoyl-CoA desaturase)-1 enzyme activity index. OBJECTIVE: In a cross-sectional study, to compare fasting and postprandial triglyceride-rich lipoprotein particle (TRLP) concentrations and size in black compared with white pre- and postmenopausal women and determine the relationship between TRLP subfractions and whole-body insulin sensitivity, hepatic and visceral fat, and SCD-1 levels. METHODS AND RESULTS: In 122 federally employed women without diabetes mellitus, 73 black (58 African American and 15 African immigrant) and 49 white; age, 44±10 (mean±SD) years; body mass index, 30.0±5.6 kg/m2, we measured lipoprotein subfractions using nuclear magnetic resonance. Hepatic fat was measured by proton magnetic resonance spectroscopy, insulin sensitivity index calculated by minimal modeling from a frequently sampled intravenous glucose test, and red blood cell fatty acid profiles were measured by gas chromatography and were used to estimate SCD-1 indices. Hepatic fat, insulin sensitivity index, and SCD-1 were similar in black women and lower than in whites, regardless of menopausal status. Fasting and postprandial large, medium, and small TRLPs, but not very small TRLPs, were lower in black women. Fasting large, medium, and very small TRLPs negatively correlated with insulin sensitivity index and positively correlated with visceral and hepatic fat and SCD-1 activity in both groups. In multivariate models, visceral fat and SCD-1 were associated with total fasting TRLP concentrations (adjR2, 0.39; P=0.001). Black women had smaller postprandial changes in large (P=0.005) and medium TRLPs (P=0.007). CONCLUSIONS: Lower visceral fat and SCD-1 activity may contribute to the paradoxical association of lower fasting and postprandial TRLP subfractions despite insulin resistance in black compared with white pre- and postmenopausal women. Similar concentrations of very small TRLPs are related to insulin resistance and could be important mediators of cardiometabolic disease risk in women. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01809288.


Asunto(s)
Adiposidad/etnología , Población Negra , Diabetes Mellitus Tipo 2/etnología , Resistencia a la Insulina/etnología , Lipoproteínas/sangre , Obesidad/etnología , Estado Prediabético/etnología , Estearoil-CoA Desaturasa/fisiología , Triglicéridos/sangre , Población Blanca , Adulto , África/etnología , Negro o Afroamericano , Glucemia/metabolismo , Estudios Transversales , Susceptibilidad a Enfermedades , Emigrantes e Inmigrantes , Ingestión de Energía , Ayuno/sangre , Femenino , Humanos , Resistencia a la Insulina/fisiología , Grasa Intraabdominal/anatomía & histología , Hígado/anatomía & histología , Menopausia , Persona de Mediana Edad , Periodo Posprandial , Estearoil-CoA Desaturasa/sangre
18.
Cochrane Database Syst Rev ; 11: CD013521, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36373961

RESUMEN

BACKGROUND: Smith-Lemli-Opitz syndrome (SLOS) is a multiple congenital malformations syndrome caused by defective cholesterol biosynthesis. Affected individuals show cholesterol deficiency and accumulation of various precursor molecules, mainly 7-dehydrocholesterol and 8-dehydrocholesterol. There is currently no cure for SLOS, with cholesterol supplementation being primarily a biochemical therapy of limited evidence. However, several anecdotal reports and preclinical studies have highlighted statins as a potential therapy for SLOS. OBJECTIVES: To evaluate the effects of statins, either alone or in combination with other non-statin therapies (e.g. cholesterol, bile acid, or vitamin co-supplementation), compared to cholesterol supplementation alone or in combination with other non-statin therapies (e.g. bile acid or vitamin supplementation) on several important outcomes including overall survival, neurobehavioral features, and adverse effects in individuals with SLOS. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, five other databases and three trials registers on 15 February 2022, together with reference checking, citation searching and contact with study authors to identify additional studies. SELECTION CRITERIA: Randomized controlled trials (RCTs) and quasi-RCTs with parallel or cross-over designs, and non-randomized studies of interventions (NRSIs) including non-randomized trials, cohort studies, and controlled before-and-after studies, were eligible for inclusion in this review if they met our prespecified inclusion criteria, i.e. involved human participants with biochemically or genetically diagnosed SLOS receiving statin therapy or cholesterol supplementation, or both. DATA COLLECTION AND ANALYSIS: Two authors screened titles and abstracts and subsequently full-texts for all potentially-relevant references. Both authors independently extracted relevant data from included studies and assessed the risks of bias. We analyzed the data extracted from the included NRSIs and cohort studies separately from the data extracted from the single included RCT. We used a random-effects model to account for the inherent heterogeneity and methodological variation between these different study designs. We used GRADE to assess the certainty of evidence. MAIN RESULTS: We included six studies (61 participants with SLOS); one RCT (N = 18), three prospective NRSIs (N = 20), and two retrospective NRSIs (N = 22). Five studies included only children, and two limited their participant inclusion by disease severity. Overall, there were nearly twice as many males as females. All six studies compared add-on statin therapy to cholesterol supplementation alone. However, the dosages, formulations, and durations of treatment were highly variable across studies. We judged the RCT as having a high risk of bias due to missing data and selective reporting. All included NRSIs had a serious or critical overall risk of bias assessed by the Risk Of Bias In Non-randomized Studies of Interventions tool (ROBINS-I). None of the included studies evaluated survival or reported quality of life (QoL). Only the included RCT formally assessed changes in the neurobehavioral manifestations of SLOS, and we are uncertain whether statin therapy improves this outcome (very low-certainty evidence). We are also uncertain whether the adverse events reported in the RCT were statin-related (very low-certainty evidence). In contrast, the adverse events reported in the NRSIs seem to be possibly due to statin therapy (risk ratio 13.00, 95% confidence interval 1.85 to 91.49; P = 0.01; low-certainty evidence), with only one of the NRSIs retrospectively mentioning changes in the irritability of two of their participants. We are uncertain whether statins affect growth based on the RCT or NRSI results (very low-certainty evidence). The RCT showed that statins may make little or no difference to plasma biomarker levels (low-certainty evidence), while we are uncertain of their effects on such parameters in the NRSIs (very low-certainty evidence). AUTHORS' CONCLUSIONS: Currently, there is no evidence on the potential effects of statin therapy in people with SLOS regarding survival or QoL, and very limited evidence on the effects on neurobehavioral manifestations. Likewise, current evidence is insufficient and of very low certainty regarding the effects of statins on growth parameters in children with SLOS and plasma or cerebrospinal fluid (CSF) levels of various disease biomarkers. Despite these limitations, current evidence seemingly suggests that statins may increase the risk of adverse reactions in individuals with SLOS receiving statins compared to those who are not. Given the insufficient evidence on potential benefits of statins in individuals with SLOS, and their potential for causing adverse reactions, anyone considering this therapy should take these findings into consideration. Future studies should address the highlighted gaps in evidence on the use of statins in individuals with SLOS by collecting prospective data on survival and performing serial standardized assessments of neurobehavioral features, QoL, anthropometric measures, and plasma and CSF biomarker levels after statin introduction. Future studies should also attempt to use consistent dosages, formulations and durations of cholesterol and statin therapy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Síndrome de Smith-Lemli-Opitz , Niño , Femenino , Humanos , Masculino , Ácidos y Sales Biliares , Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Síndrome de Smith-Lemli-Opitz/tratamiento farmacológico , Vitaminas , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Cruzados
19.
Eur Heart J ; 42(47): 4791-4806, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34472586

RESUMEN

Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , Enfermedades Cardiovasculares , Accidente Cerebrovascular , Aterosclerosis/prevención & control , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Humanos , Lipoproteínas , Triglicéridos
20.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955518

RESUMEN

Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.


Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Animales , Colesterol/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico , Ratones , Ratones Noqueados , Ácido Oléico , Receptores de LDL/genética , Aceite de Soja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA