Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(5): 1264-1281.e20, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33091337

RESUMEN

The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS.


Asunto(s)
Subtipos Serológicos HLA-DR/inmunología , Esclerosis Múltiple/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Alelos , Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Reacciones Cruzadas/inmunología , Femenino , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Péptidos/inmunología , Proteoma/metabolismo , Adulto Joven
2.
Cell ; 175(1): 85-100.e23, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173916

RESUMEN

Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as "autoproliferation" of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies.


Asunto(s)
Linfocitos B/patología , Subtipos Serológicos HLA-DR/inmunología , Esclerosis Múltiple/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/fisiopatología , Linfocitos B/metabolismo , Encéfalo/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Subtipos Serológicos HLA-DR/genética , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Receptores de Antígenos de Linfocitos T , Células TH1/fisiología
3.
Ann Neurol ; 95(4): 706-719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38149648

RESUMEN

OBJECTIVE: Analysis of postmortem multiple sclerosis (MS) tissues combined with in vivo disease milestones suggests that whereas perivascular white matter infiltrates are associated with demyelinating activity in the initial stages, leptomeningeal immune cell infiltration, enriched in B cells, and associated cortical lesions contribute to disease progression. We systematically examine the association of inflammatory features and white matter demyelination at postmortem with clinical milestones. METHODS: In 269 MS brains, 20 sites were examined using immunohistochemistry for active lesions (ALs) and perivenular inflammation (PVI). In a subset of 22, a detailed count of CD20+ B cells and CD3+ T cells in PVIs was performed. RESULTS: ALs were detected in 22%, whereas high levels of PVI were detected in 52% of cases. ALs were present in 35% of cases with high levels of PVI. Shorter time from onset of progression to death was associated with increased prevalence and higher levels of PVI (both p < 0.0001). Shorter time from onset of progression to wheelchair use was associated with higher prevalence of ALs (odds ratio [OR] = 0.921, 95% confidence interval [CI] = 0.858-0.989, p = 0.0230) and higher level of PVI (OR = 0.932, 95% CI = 0.886-0.981, p = 0.0071). High levels of PVI were associated with meningeal inflammation and increased cortical demyelination and significantly higher levels of B lymphocytes within the PVI. INTERPRETATION: ALs, a feature of early disease stage, persist up to death in a subgroup with high levels of PVI. These features link to a rapid progressive phase and higher levels of meningeal inflammation and B-cell infiltrates, supporting the hypothesis that chronic inflammation drives progression in MS. ANN NEUROL 2024;95:706-719.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Estudios de Cohortes , Estudios Retrospectivos , Inflamación/complicaciones , Encéfalo/patología , Esclerosis Múltiple Crónica Progresiva/patología
4.
Ann Neurol ; 95(3): 471-486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061895

RESUMEN

OBJECTIVE: Older people with multiple sclerosis (MS) have a less active radiological and clinical presentation, but many still attain significant levels of disability; but what drives worsening disability in this group? METHODS: We used data from the UK MS Register to characterize demographics and clinical features of late-onset multiple sclerosis (LOMS; symptom onset at ≥50 years), compared with adult-onset MS (AOMS; onset 18-49 years). We performed a pathology study of a separate MS cohort with a later onset (n = 18, mean age of onset 54 years) versus AOMS (n = 23, mean age of onset 29 years). RESULTS: In the Register cohort, there were 1,608 (9.4%) with LOMS. When compared with AOMS, there was a lower proportion of women, a higher proportion of primary progressive MS, a higher level of disability at diagnosis (median MS impact scale 36.7 vs. 28.3, p < 0.001), and a higher proportion of gait-related initial symptoms. People with LOMS were less likely to receive a high efficacy disease-modifying treatment and attained substantial disability sooner. Controlling for age of death and sex, neuron density in the thalamus and pons decreased with onset-age, whereas actively demyelinating lesions and compartmentalized inflammation was greatest in AOMS. Only neuron density, and not demyelination or the extent of compartmentalized inflammation, correlated with disability outcomes in older-onset MS patients. INTERPRETATION: The more progressive nature of older-onset MS is associated with significant neurodegeneration, but infrequent inflammatory demyelination. These findings have implications for the assessment and treatment of MS in older people. ANN NEUROL 2024;95:471-486.


Asunto(s)
Esclerosis Múltiple , Patología Clínica , Adulto , Humanos , Femenino , Anciano , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/diagnóstico , Estudios de Cohortes , Edad de Inicio , Progresión de la Enfermedad , Inflamación , Demografía
5.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38568026

RESUMEN

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Esclerosis Múltiple , Humanos , Biomarcadores/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Recurrencia
6.
Nature ; 573(7772): 75-82, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31316211

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.


Asunto(s)
Linaje de la Célula , Esclerosis Múltiple/patología , Neuronas/patología , Adulto , Animales , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Criopreservación , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/genética , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fagocitosis , ARN Nuclear Pequeño/análisis , ARN Nuclear Pequeño/genética , RNA-Seq , Transcriptoma/genética
7.
J Neuroinflammation ; 21(1): 91, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609999

RESUMEN

OBJECTIVE: Soluble CD27 is a promising cerebrospinal fluid inflammatory biomarker in multiple sclerosis. In this study, we investigate relevant immune and neuro-pathological features of soluble CD27 in multiple sclerosis. METHODS: Protein levels of soluble CD27 were correlated to inflammatory cell subpopulations and inflammatory cytokines and chemokines detected in cerebrospinal fluid of 137 patients with multiple sclerosis and 47 patients with inflammatory and non-inflammatory neurological disease from three independent cohorts. Production of soluble CD27 was investigated in cell cultures of activated T and B cells and CD27-knockout T cells. In a study including matched cerebrospinal fluid and post-mortem brain tissues of patients with multiple sclerosis and control cases, levels of soluble CD27 were correlated with perivascular and meningeal infiltrates and with neuropathological features. RESULTS: We demonstrate that soluble CD27 favours the differentiation of interferon-γ-producing T cells and is released through a secretory mechanism activated by TCR engagement and regulated by neutral sphingomyelinase. We also show that the levels of soluble CD27 correlate with the representation of inflammatory T cell subsets in the CSF of patients with relapsing-remitting multiple sclerosis and with the magnitude of perivascular and meningeal CD27 + CD4 + and CD8 + T cell infiltrates in post-mortem central nervous system tissue, defining a subgroup of patients with extensive active inflammatory lesions. INTERPRETATION: Our results demonstrate that soluble CD27 is a biomarker of disease activity, potentially informative for personalized treatment and monitoring of treatment outcomes.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Sistema Nervioso Central , Biomarcadores
8.
Neuroimage ; 274: 120138, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37116766

RESUMEN

Most neuroimaging studies display results that represent only a tiny fraction of the collected data. While it is conventional to present "only the significant results" to the reader, here we suggest that this practice has several negative consequences for both reproducibility and understanding. This practice hides away most of the results of the dataset and leads to problems of selection bias and irreproducibility, both of which have been recognized as major issues in neuroimaging studies recently. Opaque, all-or-nothing thresholding, even if well-intentioned, places undue influence on arbitrary filter values, hinders clear communication of scientific results, wastes data, is antithetical to good scientific practice, and leads to conceptual inconsistencies. It is also inconsistent with the properties of the acquired data and the underlying biology being studied. Instead of presenting only a few statistically significant locations and hiding away the remaining results, studies should "highlight" the former while also showing as much as possible of the rest. This is distinct from but complementary to utilizing data sharing repositories: the initial presentation of results has an enormous impact on the interpretation of a study. We present practical examples and extensions of this approach for voxelwise, regionwise and cross-study analyses using publicly available data that was analyzed previously by 70 teams (NARPS; Botvinik-Nezer, et al., 2020), showing that it is possible to balance the goals of displaying a full set of results with providing the reader reasonably concise and "digestible" findings. In particular, the highlighting approach sheds useful light on the kind of variability present among the NARPS teams' results, which is primarily a varied strength of agreement rather than disagreement. Using a meta-analysis built on the informative "highlighting" approach shows this relative agreement, while one using the standard "hiding" approach does not. We describe how this simple but powerful change in practice-focusing on highlighting results, rather than hiding all but the strongest ones-can help address many large concerns within the field, or at least to provide more complete information about them. We include a list of practical suggestions for results reporting to improve reproducibility, cross-study comparisons and meta-analyses.


Asunto(s)
Neuroimagen , Humanos , Reproducibilidad de los Resultados , Sesgo , Sesgo de Selección
9.
Neuroimage ; 277: 120224, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327955

RESUMEN

Typical fMRI analyses often assume a canonical hemodynamic response function (HRF) that primarily focuses on the peak height of the overshoot, neglecting other morphological aspects. Consequently, reported analyses often reduce the overall response curve to a single scalar value. In this study, we take a data-driven approach to HRF estimation at the whole-brain voxel level, without assuming a response profile at the individual level. We then employ a roughness penalty at the population level to estimate the response curve, aiming to enhance predictive accuracy, inferential efficiency, and cross-study reproducibility. By examining a fast event-related FMRI dataset, we demonstrate the shortcomings and information loss associated with adopting the canonical approach. Furthermore, we address the following key questions: 1) To what extent does the HRF shape vary across different regions, conditions, and participant groups? 2) Does the data-driven approach improve detection sensitivity compared to the canonical approach? 3) Can analyzing the HRF shape help validate the presence of an effect in conjunction with statistical evidence? 4) Does analyzing the HRF shape offer evidence for whole-brain response during a simple task?


Asunto(s)
Encéfalo , Hemodinámica , Humanos , Reproducibilidad de los Resultados , Encéfalo/fisiología , Hemodinámica/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética
10.
J Neuroinflammation ; 20(1): 185, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543564

RESUMEN

Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Lisosomas/metabolismo , Concentración de Iones de Hidrógeno
11.
Ann Neurol ; 92(4): 670-685, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748636

RESUMEN

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Asunto(s)
Quitinasas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Corteza Cerebral/metabolismo , Progresión de la Enfermedad , Epéndimo , Humanos , Inflamación/complicaciones , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/complicaciones , Parvalbúminas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Tálamo/patología
12.
PLoS Biol ; 18(12): e3001008, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315860

RESUMEN

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits.


Asunto(s)
Esclerosis Múltiple/patología , Nódulos de Ranvier/patología , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Axones/patología , Encéfalo/patología , Sinapsis Eléctricas/patología , Sinapsis Eléctricas/efectos de la radiación , Femenino , Humanos , Inflamación/patología , Masculino , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Vaina de Mielina/patología , Neuroglía/patología , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Nódulos de Ranvier/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/inmunología
13.
Brain ; 145(12): 4287-4307, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35776111

RESUMEN

Organized meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the CSF of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin-alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior subclinical immunization with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localized overexpression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin + fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on previous myelin oligodendrocyte glycoprotein immunization, the neuronal loss was present irrespective of immunization. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Ratas , Animales , Linfotoxina-alfa/metabolismo , Glicoproteína Mielina-Oligodendrócito , Inflamación/patología , Corteza Cerebral/patología , Meninges , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/patología , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Factores Inmunológicos/metabolismo
14.
Eur J Neurosci ; 56(9): 5428-5441, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35377966

RESUMEN

Necroptosis, or programmed necrosis, involves the kinase activity of receptor interacting kinases 1 and 3, the activation of the pseudokinase mixed lineage kinase domain-like and formation of a complex called the necrosome. It is one of the non-apoptotic cell death pathways that has gained interest in the recent years, especially as a neuronal cell death pathway occurring in Alzheimer's disease. In this review, we focus our discussion on the various molecular mechanisms that could trigger neuronal death through necroptosis and have been shown to play a role in Alzheimer's disease pathogenesis and neuroinflammation. We describe how each of these pathways, such as tumour necrosis factor signalling, reactive oxygen species, endosomal sorting complex, post-translational modifications and certain individual molecules, is dysregulated or activated in Alzheimer's disease, and how this dysregulation/activation could trigger necroptosis. At the cellular level, many of these molecular mechanisms and pathways may act in parallel to synergize with each other or inhibit one another, and changes in the balance between them may determine different cellular vulnerabilities at different disease stages. However, from a therapeutic standpoint, it remains unclear how best to target one or more of these pathways, given that such diverse pathways could all contribute to necroptotic cell death in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Necroptosis , Humanos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Quinasas/metabolismo , Necrosis/patología , Apoptosis/fisiología
15.
BMC Neurosci ; 23(1): 3, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983390

RESUMEN

BACKGROUND: Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common age-related neurodegenerative diseases comprising Lewy body spectrum disorders associated with cortical and subcortical Lewy body pathology. Over 30% of PD patients develop PD dementia (PDD), which describes dementia arising in the context of established idiopathic PD. Furthermore, Lewy bodies frequently accompany the amyloid plaque and neurofibrillary tangle pathology of Alzheimer's disease (AD), where they are observed in the amygdala of approximately 60% of sporadic and familial AD. While PDD and DLB share similar pathological substrates, they differ in the temporal onset of motor and cognitive symptoms; however, protein markers to distinguish them are still lacking. METHODS: Here, we systematically studied a series of AD and PD pathogenesis markers, as well as mitochondria, mitophagy, and neuroinflammation-related indicators, in the substantia nigra (SN), temporal cortex (TC), and caudate and putamen (CP) regions of human post-mortem brain samples from individuals with PDD and DLB and condition-matched controls. RESULTS: We found that p-APPT668 (TC), α-synuclein (CP), and LC3II (CP) are all increased while the tyrosine hydroxylase (TH) (CP) is decreased in both PDD and DLB compared to control. Also, the levels of Aß42 and DD2R, IBA1, and p-LRRK2S935 are all elevated in PDD compared to control. Interestingly, protein levels of p-TauS199/202 in CP and DD2R, DRP1, and VPS35 in TC are all increased in PDD compared to DLB. CONCLUSIONS: Together, our comprehensive and systematic study identified a set of signature proteins that will help to understand the pathology and etiology of PDD and DLB at the molecular level.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Enfermedad de Alzheimer/complicaciones , Encéfalo/patología , Demencia/complicaciones , Demencia/patología , Humanos , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/complicaciones
16.
Am J Nephrol ; 53(2-3): 182-190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100591

RESUMEN

INTRODUCTION: The association of apolipoprotein L1 (APOL1) nephropathy risk variants (APOL1), unique to African-ancestry (African-American [AA]) populations, with systemic inflammation, a contributor to chronic kidney disease (CKD) and end-stage kidney disease (ESKD) is ill-defined. This study aimed to describe the role of inflammatory markers in the relationship between APOL1 and incident kidney outcomes using a prospective cohort study. METHODS: APOL1 high-risk status under a recessive genetic model was studied in 10,605 AA adults aged ≥45 years from the Reasons for Geographic and Racial Differences in Stroke study. The primary variables of interest were inflammatory markers: C-reactive protein (mg/dL), white blood cell count (cells/mm3), and serum albumin (sALB) (mg/dL). High inflammation status was defined if at least one of these inflammatory markers exceeded clinical threshold. The association between APOL1 and biomarkers were assessed using regression models adjusting for age, sex, ancestry, hypertension, lipid medications, albumin-to-creatinine ratio, and estimated glomerular filtration rate (eGFR). Models were stratified by diabetes status. We identified incident ESKD using USRDS linkage, and we defined incident CKD as an eGFR <60 mL/min/1.73 m2 and ≥25% decline in the eGFR and normal baseline eGFR and tested for mediation of APOL1 and outcomes by biomarkers using the causal inference approach. RESULTS: Among 7,151 participants with data available on all inflammation markers, 4,479 participants had ≥1 marker meeting the clinical threshold. APOL1 high-risk status was associated with lower adjusted odds of reduced sALB {odds ratio (OR) (95% confidence interval [CI]): 0.59 [0.36, 0.96])}, and this association was significant in people with diabetes (OR [95% CI]: 0.40 [0.18, 0.89]) but not in those without diabetes. There was no association of APOL1 high-risk status with other markers or high inflammation status. APOL1 was independently associated with ESKD (OR [95% CI] = 1.78 [1.28, 2.48]) and CKD (OR [95% CI] = 1.38 [1.00, 1.91]). On mediation analysis, the direct effect between APOL1 and ESKD strengthened after accounting for sALB, but the estimated mediated effect was not statistically significant (OR [95% CI]: 0.98 [0.92, 1.05], p = 0.58). CONCLUSION: APOL1 high-risk variants were associated with sALB. However, sALB did not statistically mediate the association between APOL1 and incident ESKD.


Asunto(s)
Apolipoproteína L1 , Insuficiencia Renal Crónica , Adulto , Apolipoproteína L1/genética , Estudios de Cohortes , Tasa de Filtración Glomerular , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Factores de Riesgo , Albúmina Sérica
17.
Brain ; 144(6): 1646-1654, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876200

RESUMEN

While multiple sclerosis can affect any part of the CNS, it does not do so evenly. In white matter it has long been recognized that lesions tend to occur around the ventricles, and grey matter lesions mainly accrue in the outermost (subpial) cortex. In cortical grey matter, neuronal loss is greater in the outermost layers. This cortical gradient has been replicated in vivo with magnetization transfer ratio and similar gradients in grey and white matter magnetization transfer ratio are seen around the ventricles, with the most severe abnormalities abutting the ventricular surface. The cause of these gradients remains uncertain, though soluble factors released from meningeal inflammation into the CSF has the most supporting evidence. In this Update, we review this 'surface-in' spatial distribution of multiple sclerosis abnormalities and consider the implications for understanding pathogenic mechanisms and treatments designed to slow or stop them.


Asunto(s)
Encéfalo/patología , Sustancia Gris/patología , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Humanos
18.
Brain ; 144(9): 2571-2593, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33856024

RESUMEN

Parkinson's disease is a common neurodegenerative disorder in which gastrointestinal symptoms may appear prior to motor symptoms. The gut microbiota of patients with Parkinson's disease shows unique changes, which may be used as early biomarkers of disease. Alterations in the gut microbiota composition may be related to the cause or effect of motor or non-motor symptoms, but the specific pathogenic mechanisms are unclear. The gut microbiota and its metabolites have been suggested to be involved in the pathogenesis of Parkinson's disease by regulating neuroinflammation, barrier function and neurotransmitter activity. There is bidirectional communication between the enteric nervous system and the CNS, and the microbiota-gut-brain axis may provide a pathway for the transmission of α-synuclein. We highlight recent discoveries about alterations to the gut microbiota in Parkinson's disease and focus on current mechanistic insights into the microbiota-gut-brain axis in disease pathophysiology. Moreover, we discuss the interactions between the production and transmission of α-synuclein and gut inflammation and neuroinflammation. In addition, we draw attention to diet modification, the use of probiotics and prebiotics and faecal microbiota transplantation as potential therapeutic approaches that may lead to a new treatment paradigm for Parkinson's disease.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Disbiosis/metabolismo , Disbiosis/terapia , Microbioma Gastrointestinal/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Eje Cerebro-Intestino/efectos de los fármacos , Disbiosis/inmunología , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Enfermedad de Parkinson/inmunología , Prebióticos/administración & dosificación , Probióticos/administración & dosificación
19.
Neuroimage ; 237: 118091, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991698

RESUMEN

High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen Funcional , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Programas Informáticos , Neuroimagen Funcional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
20.
Hum Mol Genet ; 28(5): 858-874, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423114

RESUMEN

Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.


Asunto(s)
Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Negro o Afroamericano/genética , Predisposición Genética a la Enfermedad , Anciano , Etnicidad/genética , Femenino , Ligamiento Genético , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA