Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 130(2): 317-326, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38049555

RESUMEN

BACKGROUND: Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS: A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS: Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION: Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Factores de Transcripción/genética , Mutación Puntual , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Tirosina Quinasa 3 Similar a fms/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338754

RESUMEN

Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , ARN Circular , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , ARN Circular/genética
3.
BMC Genomics ; 17(1): 912, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842494

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) allows unbiased, in-depth interrogation of cancer genomes. Many somatic variant callers have been developed yet accurate ascertainment of somatic variants remains a considerable challenge as evidenced by the varying mutation call rates and low concordance among callers. Statistical model-based algorithms that are currently available perform well under ideal scenarios, such as high sequencing depth, homogeneous tumor samples, high somatic variant allele frequency (VAF), but show limited performance with sub-optimal data such as low-pass whole-exome/genome sequencing data. While the goal of any cancer sequencing project is to identify a relevant, and limited, set of somatic variants for further sequence/functional validation, the inherently complex nature of cancer genomes combined with technical issues directly related to sequencing and alignment can affect either the specificity and/or sensitivity of most callers. RESULTS: For these reasons, we developed SNooPer, a versatile machine learning approach that uses Random Forest classification models to accurately call somatic variants in low-depth sequencing data. SNooPer uses a subset of variant positions from the sequencing output for which the class, true variation or sequencing error, is known to train the data-specific model. Here, using a real dataset of 40 childhood acute lymphoblastic leukemia patients, we show how the SNooPer algorithm is not affected by low coverage or low VAFs, and can be used to reduce overall sequencing costs while maintaining high specificity and sensitivity to somatic variant calling. When compared to three benchmarked somatic callers, SNooPer demonstrated the best overall performance. CONCLUSIONS: While the goal of any cancer sequencing project is to identify a relevant, and limited, set of somatic variants for further sequence/functional validation, the inherently complex nature of cancer genomes combined with technical issues directly related to sequencing and alignment can affect either the specificity and/or sensitivity of most callers. The flexibility of SNooPer's random forest protects against technical bias and systematic errors, and is appealing in that it does not rely on user-defined parameters. The code and user guide can be downloaded at https://sourceforge.net/projects/snooper/ .


Asunto(s)
Biología Computacional/métodos , Variación Genética , Aprendizaje Automático , Programas Informáticos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Navegador Web , Flujo de Trabajo
4.
Haematologica ; 101(12): 1534-1543, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27540136

RESUMEN

The most common rearrangement in childhood precursor B-cell acute lymphoblastic leukemia is the t(12;21)(p13;q22) translocation resulting in the ETV6-AML1 fusion gene. A frequent concomitant event is the loss of the residual ETV6 allele suggesting a critical role for the ETV6 transcriptional repressor in the etiology of this cancer. However, the precise mechanism through which loss of functional ETV6 contributes to disease pathogenesis is still unclear. To investigate the impact of ETV6 loss on the transcriptional network and to identify new transcriptional targets of ETV6, we used whole transcriptome analysis of both pre-B leukemic cell lines and patients combined with chromatin immunoprecipitation. Using this integrative approach, we identified 4 novel direct ETV6 target genes: CLIC5, BIRC7, ANGPTL2 and WBP1L To further evaluate the role of chloride intracellular channel protein CLIC5 in leukemogenesis, we generated cell lines overexpressing CLIC5 and demonstrated an increased resistance to hydrogen peroxide-induced apoptosis. We further described the implications of CLIC5's ion channel activity in lysosomal-mediated cell death, possibly by modulating the function of the transferrin receptor with which it colocalizes intracellularly. For the first time, we showed that loss of ETV6 leads to significant overexpression of CLIC5, which in turn leads to decreased lysosome-mediated apoptosis. Our data suggest that heightened CLIC5 activity could promote a permissive environment for oxidative stress-induced DNA damage accumulation, and thereby contribute to leukemogenesis.


Asunto(s)
Canales de Cloruro/genética , Regulación Leucémica de la Expresión Génica , Proteínas de Microfilamentos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biomarcadores de Tumor , Línea Celular Tumoral , Niño , Preescolar , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Peróxido de Hidrógeno/farmacología , Lisosomas/metabolismo , Masculino , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Translocación Genética , Proteína ETS de Variante de Translocación 6
5.
BMC Cancer ; 15: 539, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201965

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. While the multi-step model of pediatric leukemogenesis suggests interplay between constitutional and somatic genomes, the role of inherited genetic variability remains largely undescribed. Nonsyndromic familial ALL, although extremely rare, provides the ideal setting to study inherited contributions to ALL. Toward this goal, we sequenced the exomes of a childhood ALL family consisting of mother, father and two non-twinned siblings diagnosed with concordant pre-B hyperdiploid ALL and previously shown to have inherited a rare form of PRDM9, a histone H3 methyltransferase involved in crossing-over at recombination hotspots and Holliday junctions. We postulated that inheritance of additional rare disadvantaging variants in predisposing cancer genes could affect genomic stability and lead to increased risk of hyperdiploid ALL within this family. METHODS: Whole exomes were captured using Agilent's SureSelect kit and sequenced on the Life Technologies SOLiD System. We applied a data reduction strategy to identify candidate variants shared by both affected siblings. Under a recessive disease model, we focused on rare non-synonymous or frame-shift variants in leukemia predisposing pathways. RESULTS: Though the family was nonsyndromic, we identified a combination of rare variants in Fanconi anemia (FA) genes FANCP/SLX4 (compound heterozygote - rs137976282/rs79842542) and FANCA (rs61753269) and a rare homozygous variant in the Holliday junction resolvase GEN1 (rs16981869). These variants, predicted to affect protein function, were previously identified in familial breast cancer cases. Based on our in-house database of 369 childhood ALL exomes, the sibs were the only patients to carry this particularly rare combination and only a single hyperdiploid patient was heterozygote at both FANCP/SLX4 positions, while no FANCA variant allele carriers were identified. FANCA is the most commonly mutated gene in FA and is essential for resolving DNA interstrand cross-links during replication. FANCP/SLX4 and GEN1 are involved in the cleavage of Holliday junctions and their mutated forms, in combination with the rare allele of PRDM9, could alter Holliday junction resolution leading to nondisjunction of chromosomes and segregation defects. CONCLUSION: Taken together, these results suggest that concomitant inheritance of rare variants in FANCA, FANCP/SLX4 and GEN1 on the specific genetic background of this familial case, could lead to increased genomic instability, hematopoietic dysfunction, and higher risk of childhood leukemia.


Asunto(s)
Exoma , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Alelos , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Hermanos
6.
BMC Cancer ; 15: 621, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26345285

RESUMEN

BACKGROUND: The identification of oncogenic driver mutations has largely relied on the assumption that genes that exhibit more mutations than expected by chance are more likely to play an active role in tumorigenesis. Major cancer sequencing initiatives have therefore focused on recurrent mutations that are more likely to be drivers. However, in specific genetic contexts, low frequency mutations may also be capable of participating in oncogenic processes. Reliable strategies for identifying these rare or even patient-specific (private) mutations are needed in order to elucidate more personalized approaches to cancer diagnosis and treatment. METHODS: Here we performed whole-exome sequencing on three cases of childhood pre-B acute lymphoblastic leukemia (cALL), representing three cytogenetically-defined subgroups (high hyperdiploid, t(12;21) translocation, and cytogenetically normal). We applied a data reduction strategy to identify both common and rare/private somatic events with high functional potential. Top-ranked candidate mutations were subsequently validated at high sequencing depth on an independent platform and in vitro expression assays were performed to evaluate the impact of identified mutations on cell growth and survival. RESULTS: We identified 6 putatively damaging non-synonymous somatic mutations among the three cALL patients. Three of these mutations were well-characterized common cALL mutations involved in constitutive activation of the mitogen-activated protein kinase pathway (FLT3 p.D835Y, NRAS p.G13D, BRAF p.G466A). The remaining three patient-specific mutations (ACD p.G223V, DOT1L p.V114F, HCFC1 p.Y103H) were novel mutations previously undescribed in public cancer databases. Cytotoxicity assays demonstrated a protective effect of the ACD p.G223V mutation against apoptosis in leukemia cells. ACD plays a key role in protecting telomeres and recruiting telomerase. Using a telomere restriction fragment assay, we also showed that this novel mutation in ACD leads to increased telomere length in leukemia cells. CONCLUSION: This study identified ACD as a novel gene involved in cALL and points to a functional role for ACD in enhancing leukemia cell survival. These results highlight the importance of rare/private somatic mutations in understanding cALL etiology, even within well-characterized molecular subgroups.


Asunto(s)
Apoptosis/genética , Análisis Mutacional de ADN/métodos , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Complejo Shelterina
8.
Haematologica ; 99(2): 314-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24038028

RESUMEN

The introduction of multiagent treatment protocols has led to a remarkable increase in survival rates for children diagnosed with acute lymphoblastic leukemia, yet for a subpopulation of patients, resistance to chemotherapeutics remains an obstacle to successful treatment. Here we investigate the role of the mitochondrial (or intrinsic) apoptosis pathway in modulating the onset and outcomes of childhood acute lymphoblastic leukemia. Cell death is a highly regulated process that plays an essential role in regulating cell homeostasis, particularly in tissues with high intrinsic proliferating capacity such as the hematopoietic system. Following the underlying paradigm that cis-acting genetic variation can influence disease risk and outcomes by modulating gene expression, we performed a systematic analysis of the proximal promoter regions of 21 genes involved in apoptosis. Using gene reporter assays, we show that promoter variations in 11 intrinsic apoptosis genes, including ADPRT, APAF1, BCL2, BAD, BID, MCL1, BIRC4, BCL2L1, ENDOG, YWHAB, and YWHAQ, influence promoter activity in an allele-specific manner. We also show that correlated promoter variation and increased expression of MCL1 is associated with reduced overall survival among high-risk patients receiving higher doses of corticosteroid, suggesting that increased expression of this anti-apoptosis gene could lead to reduced cell death and influence treatment response in a disease- and dose-responsive manner.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis/genética , Regulación Leucémica de la Expresión Génica/genética , Proteínas de Neoplasias , Polimorfismo Genético , Adolescente , Adulto , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad
9.
Sci Rep ; 13(1): 16443, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777587

RESUMEN

Neuroblastoma, the most common type of pediatric extracranial solid tumor, causes 10% of childhood cancer deaths. Despite intensive multimodal treatment, the outcomes of high-risk neuroblastoma remain poor. We urgently need to develop new therapies with safe long-term toxicity profiles for rapid testing in clinical trials. Drug repurposing is a promising approach to meet these needs. Here, we investigated disulfiram, a safe and successful chronic alcoholism treatment with known anticancer and epigenetic effects. Disulfiram efficiently induced cell cycle arrest and decreased the viability of six human neuroblastoma cell lines at half-maximal inhibitory concentrations up to 20 times lower than its peak clinical plasma level in patients treated for chronic alcoholism. Disulfiram shifted neuroblastoma transcriptome, decreasing MYCN levels and activating neuronal differentiation. Consistently, disulfiram significantly reduced the protein level of lysine acetyltransferase 2A (KAT2A), drastically reducing acetylation of its target residues on histone H3. To investigate disulfiram's anticancer effects in an in vivo model of high-risk neuroblastoma, we developed a disulfiram-loaded emulsion to deliver the highly liposoluble drug. Treatment with the emulsion significantly delayed neuroblastoma progression in mice. These results identify KAT2A as a novel target of disulfiram, which directly impacts neuroblastoma epigenetics and is a promising candidate for repurposing to treat pediatric neuroblastoma.


Asunto(s)
Disulfiram , Neuroblastoma , Animales , Niño , Humanos , Ratones , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Línea Celular Tumoral , Disulfiram/farmacología , Disulfiram/uso terapéutico , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Emulsiones/uso terapéutico , Histona Acetiltransferasas/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética
10.
J Hypertens ; 40(7): 1394-1405, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35703228

RESUMEN

OBJECTIVE: Hypertension is associated with vascular injury, which contributes to end-organ damage. MicroRNAs regulating mRNAs have been shown to play a role in vascular injury in hypertensive mice. We aimed to identify differentially expressed microRNAs and their mRNA targets in small arteries of hypertensive patients with/without chronic kidney disease (CKD) to shed light on the pathophysiological molecular mechanisms of vascular remodeling. METHODS AND RESULTS: Normotensive individuals and hypertensive patients with/without CKD were recruited ( n  = 15-16 per group). Differentially expressed microRNAs and mRNAs were identified uniquely associated with hypertension (microRNAs: 10, mRNAs: 68) or CKD (microRNAs: 68, mRNAs: 395), and in both groups (microRNAs: 2, mRNAs: 32) with a P less than 0.05 and a fold change less than or greater than 1.3 in subcutaneous small arteries ( n  = 14-15). One of the top three differentially expressed microRNAs, miR-338-3p that was down-regulated in CKD, presented the best correlation between RNA sequencing and reverse transcription-quantitative PCR (RT-qPCR, R2  = 0.328, P  < 0.001). Profiling of human aortic vascular cells showed that miR-338-3p was mostly expressed in endothelial cells. Two of the selected top nine up-regulated miR-338-3p predicted targets, glutathione peroxidase 3 ( GPX3 ) and protein tyrosine phosphatase receptor type S ( PTPRS ), were validated with mimics by RT-qPCR in human aortic endothelial cells ( P  < 0.05) and by a luciferase assay in HEK293T cells ( P  < 0.05). CONCLUSION: A distinct transcriptomic profile was observed in gluteal subcutaneous small arteries of hypertensive patients with CKD. Down-regulated miR-338-3p could contribute to GPX3 and PTPRS up-regulation via the canonical microRNA targeting machinery in hypertensive patients with CKD.http://links.lww.com/HJH/C27.


Asunto(s)
Hipertensión , MicroARNs , Insuficiencia Renal Crónica , Lesiones del Sistema Vascular , Animales , Aorta/metabolismo , Células Endoteliales/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Células HEK293 , Humanos , Hipertensión/complicaciones , Hipertensión/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , ARN Mensajero , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Transcriptoma
11.
iScience ; 25(3): 103858, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35198911

RESUMEN

ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network.

12.
Cancer Chemother Pharmacol ; 88(5): 845-856, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331108

RESUMEN

PURPOSE: Embryonal rhabdomyosarcoma (eRMS) is the most common type of rhabdomyosarcoma in children. eRMS is characterized by malignant skeletal muscle cells driven by hyperactivation of several oncogenic pathways including the MYC pathway. Targeting MYC in cancer has been extremely challenging. Recently, we have demonstrated that the heart failure drug, proscillaridin A, produced anticancer effects with specificity toward MYC expressing leukemia cells. We also reported that decitabine, a hypomethylating drug, synergizes with proscillaridin A in colon cancer cells. Here, we investigated whether proscillaridin A exhibits epigenetic and anticancer activity against eRMS RD cells, overexpressing MYC oncogene, and its combination with decitabine. METHODS: We investigated the anticancer effects of proscillaridin A in eRMS RD cells in vitro. In response to drug treatment, we measured growth inhibition, cell cycle arrest, loss of clonogenicity and self-renewal capacity. We further evaluated the impact of proscillaridin A on MYC expression and its downstream transcriptomic effects by RNA sequencing. Then, we measured protein expression of epigenetic regulators and their associated chromatin post-translational modifications in response to drug treatment. Chromatin immunoprecipitation sequencing data sets were coupled with transcriptomic results to pinpoint the impact of proscillaridin A on gene pathways associated with specific chromatin modifications. Lastly, we evaluated the effect of the combination of proscillaridin A and the DNA demethylating drug decitabine on eRMS RD cell growth and clonogenic potential. RESULTS: Clinically relevant concentration of proscillaridin A (5 nM) produced growth inhibition, cell cycle arrest and loss of clonogenicity in eRMS RD cells. Proscillaridin A produced a significant downregulation of MYC protein expression and inhibition of oncogenic transcriptional programs controlled by MYC, involved in cell replication. Interestingly, significant reduction in total histone 3 acetylation and on specific lysine residues (lysine 9, 14, 18, and 27 on histone 3) was associated with significant protein downregulation of a series of lysine acetyltransferases (KAT3A, KAT3B, KAT2A, KAT2B, and KAT5). In addition, proscillaridin A produced synergistic growth inhibition and loss of clonogenicity when combined with the approved DNA demethylating drug decitabine. CONCLUSION: Proscillaridin A produces anticancer and epigenetic effects in the low nanomolar range and its combination with decitabine warrants further investigation for the treatment of eRMS.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proscilaridina/farmacología , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Autorrenovación de las Células/efectos de los fármacos , Decitabina/administración & dosificación , Reposicionamiento de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Lisina/metabolismo , Proteínas de Neoplasias , Regiones Promotoras Genéticas/efectos de los fármacos , Proscilaridina/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/patología
13.
Hypertension ; 77(1): 178-189, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161775

RESUMEN

Chromosome 2 introgression from normotensive Brown Norway (BN) rats into hypertensive Dahl salt-sensitive (SS) background (SS-chromosome 2BN/Mcwi; consomic S2B) reduced blood pressure and vascular inflammation under a normal-salt diet (NSD). We hypothesized that BN chromosome 2 contains anti-inflammatory genes that could reduce blood pressure and vascular inflammation in rats fed NSD or high-salt diet (HSD). Four- to 6-week old male SS and congenic rats containing the BN chromosome 2 distal portion (SS.BN-[rs13453786-rs66377062]/Aek; S2Ba) and middle segment (SS.BN-[rs106982173-rs65057186]/Aek; S2Bb) were fed NSD or HSD (4% NaCl) up to age 12 to 13 weeks. Systolic blood pressure determined by telemetry was higher in SS rats fed HSD versus NSD. Systolic blood pressure was lower in both congenic rats than in SS under NSD, but similar under HSD versus SS. Reactive oxygen species generation using dihydroethidium staining, expression of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and immune cell infiltration by immunofluorescence demonstrated that S2Ba rats present less inflammation under NSD and more under HSD versus SS rats. RNA sequencing and reverse transcription-quantitative PCR identified 2 differentially expressed genes encoded within BN chromosome 2 distal portion that could act as regulators of vascular inflammation. These were downregulated glutamyl aminopeptidase (Enpep) that was anti-inflammatory under NSD and upregulated heparan sulfate 2-O-sulfotransferase 1 (Hs2st1) that was proinflammatory under HSD. In conclusion, 2 differentially expressed genes encoded within introgressed BN chromosome 2 distal fragment were identified: Enpep associated with reduced vascular inflammation under NSD, and Hs2st1, associated with increased vascular inflammation under HSD.


Asunto(s)
Cromosomas de los Mamíferos , Glutamil Aminopeptidasa/fisiología , Hipertensión/genética , Análisis de Secuencia de ARN/métodos , Sulfotransferasas/fisiología , Vasculitis/genética , Animales , Humanos , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético/administración & dosificación
14.
Haematologica ; 95(9): 1608-11, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20460642

RESUMEN

Although childhood acute lymphoblastic leukemia is the most common pediatric cancer, its etiology remains poorly understood. In an attempt to replicate the findings of 2 recent genome-wide association studies in a French-Canadian cohort, we confirmed the association of 5 SNPs [rs7073837 (P=4.2 x 10(-4)), rs10994982 (P=3.8 x 10(-4)), rs10740055 (P=1.6 x 10(-5)), rs10821936 (P=1.7 x 10(-7)) and rs7089424 (P=3.6 x 10(-7))] in the ARID5B gene with childhood acute lymphoblastic leukemia. We also confirmed a selective effect for B-cell acute lymphoblastic leukemia with hyperdiploidy and report a putative gender-specific effect of ARID5B SNPs on acute lymphoblastic leukemia risk in males. This study provides a strong rationale for more detailed analysis to identify the causal variants at this locus and to better understand the overall functional contribution of ARID5B to childhood acute lymphoblastic leukemia susceptibility.


Asunto(s)
Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Factores de Transcripción/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Femenino , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Adulto Joven
15.
J Biomed Biotechnol ; 2010: 369534, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20617153

RESUMEN

Several designs and analytical approaches have been proposed to dissect offspring from maternal genetic contributions to early-onset diseases. However, lack of parental controls halts the direct verification of the assumption of mating symmetry (MS) required to assess maternally-mediated effects. In this study, we used simulations to investigate the performance of existing methods under mating asymmetry (MA) when parents of controls are missing. Our results show that the log-linear, likelihood-based framework using a case-triad/case-control hybrid design provides valid tests for maternal genetic effects even under MA. Using this approach, we examined fetomaternal associations between 29 SNPs in 12 cell-cycle genes and childhood pre-B acute lymphoblastic leukemia (ALL). We identified putative fetomaternal effects at loci CDKN2A rs36228834 (P = .017) and CDKN2B rs36229158 (P = .022) that modulate the risk of childhood ALL. These data further corroborate the importance of the mother's genotype on the susceptibility to early-onset diseases.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Modelos Lineales , Modelos Genéticos , Madres , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Edad de Inicio , Estudios de Cohortes , Simulación por Computador , Bases de Datos Factuales , Femenino , Genes cdc , Genes p16 , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética
16.
Sci Rep ; 10(1): 8079, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415257

RESUMEN

Childhood acute lymphoblastic leukemia (cALL) is the most common pediatric cancer. It is characterized by bone marrow lymphoid precursors that acquire genetic alterations, resulting in disrupted maturation and uncontrollable proliferation. More than a dozen molecular subtypes of variable severity can be used to classify cALL cases. Modern therapy protocols currently cure 85-90% of cases, but other patients are refractory or will relapse and eventually succumb to their disease. To better understand intratumor heterogeneity in cALL patients, we investigated the nature and extent of transcriptional heterogeneity at the cellular level by sequencing the transcriptomes of 39,375 individual cells in eight patients (six B-ALL and two T-ALL) and three healthy pediatric controls. We observed intra-individual transcriptional clusters in five out of the eight patients. Using pseudotime maturation trajectories of healthy B and T cells, we obtained the predicted developmental state of each leukemia cell and observed distribution shifts within patients. We showed that the predicted developmental states of these cancer cells are inversely correlated with ribosomal protein expression levels, which could be a common contributor to intra-individual heterogeneity in cALL patients.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación del Desarrollo de la Expresión Génica , Heterogeneidad Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Ribosómicas/genética , Análisis de la Célula Individual/métodos , Biomarcadores de Tumor/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Ribosómicas/metabolismo , Secuenciación del Exoma/métodos
17.
Epigenomics ; 12(22): 1949-1955, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33245684

RESUMEN

Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.


Asunto(s)
MicroARNs/genética , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Diploidia , Femenino , Regulación Leucémica de la Expresión Génica , Técnicas de Genotipaje , Humanos , Lactante , Masculino , Proteínas de Fusión Oncogénica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , ARN Mensajero/química , ARN Mensajero/genética
18.
Am J Hypertens ; 33(6): 505-513, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32115655

RESUMEN

BACKGROUND: Hypertension (HTN) is associated with target organ damage such as cardiac, vascular, and kidney injury. Several studies have investigated circulating microRNAs (miRNAs) as biomarkers of cardiovascular disease, but few have examined them as biomarker of target organ damage in HTN. We aimed to identify circulating miRNAs that could serve as biomarkers of HTN-induced target organ damage using an unbiased approach. METHODS AND RESULTS: Fifteen normotensive subjects, 16 patients with HTN, 15 with HTN associated with other features of the metabolic syndrome (MetS), and 16 with HTN or chronic kidney disease (CKD) were studied. Circulating RNA extracted from platelet-poor plasma was used for small RNA sequencing. Differentially expressed (DE) genes were identified with a threshold of false discovery rate <0.1. DE miRNAs were identified uniquely associated with HTN, MetS, or CKD. However, only 2 downregulated DE miRNAs (let-7g-5p and miR-191-5p) could be validated by reverse transcription-quantitative PCR. Let-7g-5p was associated with large vessel stiffening, miR-191-5p with MetS, and both miRNAs with estimated glomerular filtration rate (eGFR) and neutrophil and lymphocyte fraction or number and neutrophil-to-lymphocyte ratio. Using the whole population, stepwise multiple linear regression generated a model showing that let-7g-5p, miR-191-5p, and urinary albumin/creatinine ratio predicted eGFR with an adjusted R2 of 0.46 (P = 8.5e-7). CONCLUSIONS: We identified decreased circulating let-7g-5p and miR-191-5p as independent biomarkers of CKD among patients with HTN, which could have pathophysiological and therapeutic implications.


Asunto(s)
MicroARN Circulante/sangre , Hipertensión/sangre , MicroARNs/sangre , Insuficiencia Renal Crónica/sangre , Adulto , Anciano , Albuminuria/sangre , Albuminuria/diagnóstico , Albuminuria/etiología , Albuminuria/fisiopatología , Presión Sanguínea , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Tasa de Filtración Glomerular , Humanos , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Riñón/fisiopatología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/fisiopatología
19.
Hypertension ; 73(5): 1007-1017, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30929512

RESUMEN

Vascular injury is an early manifestation in hypertension and a cause of end-organ damage. MicroRNAs play an important role in cardiovascular disease, but their implication in vascular injury in hypertension remains unclear. This study revealed using an unbiased approach, microRNA and mRNA sequencing with molecular interaction analysis, a microRNA-transcription factor coregulatory network involved in vascular injury in mice made hypertensive by 14-day Ang II (angiotensin II) infusion. A candidate gene approach identified upregulated miR-431-5p encoded in the conserved 12qF1 (14q32 in humans) microRNA cluster, whose expression correlated with blood pressure, and which has been shown to be upregulated in human atherosclerosis, as a potential key regulator in Ang II-induced vascular injury. Gain- and loss-of-function in human vascular smooth muscle cells demonstrated that miR-431-5p regulates in part gene expression by targeting ETS homologous factor. In vivo miR-431-5p knockdown delayed Ang II-induced blood pressure elevation and reduced vascular injury in mice, which demonstrated its potential as a target for treatment of hypertension and vascular injury.


Asunto(s)
Regulación de la Expresión Génica , Hipertensión/genética , MicroARNs/genética , ARN/genética , Lesiones del Sistema Vascular/genética , Angiotensina II/toxicidad , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/biosíntesis , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Lesiones del Sistema Vascular/inducido químicamente , Lesiones del Sistema Vascular/prevención & control
20.
Oncogene ; 38(16): 2994-3002, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30575814

RESUMEN

Pilocytic astrocytoma (PA) is emerging as a tumor entity with dysregulated RAS/RAF/MEK/ERK signaling. In this study, we report the identification of a novel recurrent BRAF insertion (p.V504_R506dup) in five PA cases harboring exclusively this somatic tandem duplication. This recurrent alteration leads to an addition of three amino acids in the kinase domain of BRAF and has functional impact on activating MAPK phosphorylation. Importantly, we show that this mutation confers resistance to RAF inhibitors without changing effectiveness while downstream MEK inhibitors remain effective. Our results further emphasize the importance of BRAF alterations in PA and the need to characterize them in a given tumor as this can affect therapeutic strategies and their potential use as tumor marker in molecular diagnostics.


Asunto(s)
Astrocitoma/genética , Biomarcadores de Tumor/genética , Mutación/genética , Recurrencia Local de Neoplasia/genética , Proteínas Proto-Oncogénicas B-raf/genética , Adolescente , Línea Celular , Genes Duplicados/genética , Células HEK293 , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA