Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582357

RESUMEN

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Neoplasias/genética , Oncogenes , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN
2.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675502

RESUMEN

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Neoplasias/genética , Proteogenómica , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Fosforilación Oxidativa , Fosforilación/genética , Transducción de Señal/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación del Exoma
3.
Cell ; 173(3): 540-542, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677504

RESUMEN

Extensive multi-regional whole-genome and -exome sequencing performed in tumors from patients with localized, as well as metastatic, clear cell renal cell carcinoma provides a comprehensive description of the tumor origin, intratumoral heterogeneity, evolution, and route to metastasis, laying the foundation for the development of precision clinical management.


Asunto(s)
Carcinoma de Células Renales , Mutación , Humanos , Neoplasias Renales
5.
Hum Mol Genet ; 32(22): 3135-3145, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37561409

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Carcinoma de Células Renales/genética , Leiomiomatosis/genética , Leiomiomatosis/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/análisis , Neoplasias Renales/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Mutación , ARN Mensajero/genética
6.
Blood ; 137(1): 126-137, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32785680

RESUMEN

Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedad Injerto contra Huésped/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Glucólisis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Activación de Linfocitos/inmunología , Ratones , Análisis de la Célula Individual/métodos , Trasplante Homólogo
7.
J Med Genet ; 59(1): 18-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067352

RESUMEN

Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary tumour susceptibility disease caused by germline pathogenic variation of the VHL tumour suppressor gene. Affected individuals are at risk of developing multiple malignant and benign tumours in a number of organs.In this report, a male patient in his 20s who presented to the Urologic Oncology Branch at the National Cancer Institute with a clinical diagnosis of VHL was found to have multiple cerebellar haemangioblastomas, bilateral epididymal cysts, multiple pancreatic cysts, and multiple, bilateral renal tumours and cysts. The patient had no family history of VHL and was negative for germline VHL mutation by standard genetic testing. Further genetic analysis demonstrated a germline balanced translocation between chromosomes 1 and 3, t(1;3)(p36.3;p25) with a breakpoint on chromosome 3 within the second intron of the VHL gene. This created a pathogenic germline alteration in VHL by a novel mechanism that was not detectable by standard genetic testing.Karyotype analysis is not commonly performed in existing genetic screening protocols for patients with VHL. Based on this case, protocols should be updated to include karyotype analysis in patients who are clinically diagnosed with VHL but demonstrate no detectable mutation by existing genetic testing.


Asunto(s)
Mutación de Línea Germinal , Translocación Genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Neoplasias Cerebelosas/etiología , Análisis Mutacional de ADN , Hemangioblastoma/etiología , Humanos , Neoplasias Renales/etiología , Masculino , Secuenciación del Exoma , Enfermedad de von Hippel-Lindau/complicaciones
8.
Genes Chromosomes Cancer ; 60(6): 434-446, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33527590

RESUMEN

Renal cell carcinoma (RCC) is not a single disease but is made up of several different histologically defined subtypes that are associated with distinct genetic alterations which require subtype specific management and treatment. Papillary renal cell carcinoma (pRCC) is the second most common subtype after conventional/clear cell RCC (ccRCC), representing ~20% of cases, and is subcategorized into type 1 and type 2 pRCC. It is important for preclinical studies to have cell lines that accurately represent each specific RCC subtype. This study characterizes seven cell lines derived from both primary and metastatic sites of type 1 pRCC, including the first cell line derived from a hereditary papillary renal carcinoma (HPRC)-associated tumor. Complete or partial gain of chromosome 7 was observed in all cell lines and other common gains of chromosomes 16, 17, or 20 were seen in several cell lines. Activating mutations of MET were present in three cell lines that all demonstrated increased MET phosphorylation in response to HGF and abrogation of MET phosphorylation in response to MET inhibitors. CDKN2A loss due to mutation or gene deletion, associated with poor outcomes in type 1 pRCC patients, was observed in all cell line models. Six cell lines formed tumor xenografts in athymic nude mice and thus provide in vivo models of type 1 pRCC. These type 1 pRCC cell lines provide a comprehensive representation of the genetic alterations associated with pRCC that will give insight into the biology of this disease and be ideal preclinical models for therapeutic studies.


Asunto(s)
Carcinoma de Células Renales/genética , Autenticación de Línea Celular/métodos , Neoplasias Renales/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Inestabilidad Cromosómica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Neoplasias Renales/patología , Ratones , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
9.
Hum Mutat ; 42(5): 520-529, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675279

RESUMEN

Von Hippel-Lindau (VHL) is a hereditary multisystem disorder caused by germline alterations in the VHL gene. VHL patients are at risk for benign as well as malignant lesions in multiple organs including kidney, adrenal, pancreas, the central nervous system, retina, endolymphatic sac of the ear, epididymis, and broad ligament. An estimated 30%-35% of all families with VHL inherit a germline deletion of one, two, or all three exons. In this study, we have extensively characterized germline deletions identified in patients from 71 VHL families managed at the National Cancer Institute, including 59 partial (PD) and 12 complete VHL deletions (CD). Deletions that ranged in size from 1.09 to 355 kb. Fifty-eight deletions (55 PD and 3 CD) have been mapped to the exact breakpoints. Ninety-five percent (55 of 58) of mapped deletions involve Alu repeats at both breakpoints. Several novel classes of deletions were identified in this cohort, including two cases that have complex rearrangements involving both deletion and inversion, two cases with inserted extra Alu-like sequences, six cases that involve breakpoints in Alu repeats situated in opposite orientations, and a "hotspot" PD of Exon 3 observed in 12 families that involves the same pair of Alu repeats.


Asunto(s)
Enfermedad de von Hippel-Lindau , Femenino , Eliminación de Gen , Células Germinativas , Mutación de Línea Germinal , Humanos , Masculino , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética
10.
Genes Chromosomes Cancer ; 59(8): 472-483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259323

RESUMEN

Renal medullary carcinoma (RMC) is a rare, aggressive disease that predominantly afflicts individuals of African or Mediterranean descent with sickle cell trait. RMC comprises 1% of all renal cell carcinoma diagnoses with a median overall survival of 13 months. Patients are typically young (median age-22) and male (male:female ratio of 2:1) and tumors are characterized by complete loss of expression of the SMARCB1 tumor suppressor protein. Due to the low incidence of RMC and the disease's aggressiveness, treatment decisions are often based on case reports. Thus, it is critical to develop preclinical models of RMC to better understand the pathogenesis of this disease and to identify effective forms of therapy. Two novel cell line models, UOK353 and UOK360, were derived from primary RMCs that both demonstrated the characteristic SMARCB1 loss. Both cell lines overexpressed EZH2 and other members of the polycomb repressive complex and EZH2 inhibition in RMC tumor spheroids resulted in decreased viability. High throughput drug screening of both cell lines revealed several additional candidate compounds, including bortezomib that had both in vitro and in vivo antitumor activity. The activity of bortezomib was shown to be partially dependent on increased oxidative stress as addition of the N-acetyl cysteine antioxidant reduced the effect on cell proliferation. Combining bortezomib and cisplatin further decreased cell viability both in vitro and in vivo that single agent bortezomib treatment. The UOK353 and UOK360 cell lines represent novel preclinical models for the development of effective forms of therapy for RMC patients.


Asunto(s)
Carcinoma Medular/patología , Neoplasias Renales/patología , Cultivo Primario de Células/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Carcinoma Medular/tratamiento farmacológico , Carcinoma Medular/genética , Autenticación de Línea Celular/métodos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Ratones , Ratones Desnudos , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Células Tumorales Cultivadas
11.
Cancer ; 125(7): 1060-1069, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30548481

RESUMEN

BACKGROUND: An inherited susceptibility to renal cancers is associated with multiple predisposing genes, but most screening tests are limited to patients with a family history. Next-generation sequencing (NGS)-based multigene panels provide an efficient and adaptable tool for investigating pathogenic germline mutations on a larger scale. This study investigated the frequency of pathogenic germline mutations in renal cancer predisposition genes in patients with sporadic, early-onset disease. METHODS: An NGS-based panel of 23 known and potential renal cancer predisposition genes was used to analyze germline mutations in 190 unrelated Chinese patients under the age of 45 years who presented with renal tumors. The detected variants were filtered for pathogenicity, and then their frequencies were calculated and correlated with clinical features. Germline variants of the fumarate hydratase (FH) and BRCA1-associated protein 1 (BAP1) genes were comprehensively analyzed because of their aggressive potential. RESULTS: In total, 18 patients (9.5%) had germline mutations in 10 genes. Twelve of these 18 patients had alterations in renal cancer predisposition genes (6.3%), and 6 patients had mutations in potential predisposition genes such as BRCA1/2. Notably, pathogenic mutation carriers had a significant family history in second-degree relatives in comparison with those without pathogenic mutations (P < .001). Variants of unknown clinical significance in FH and BAP1 demonstrated evidence of additional somatic loss in tumors. CONCLUSIONS: In patients with early-onset disease, a multigene panel identified a high pathogenic germline mutation rate in renal cancer predisposition genes. This study emphasizes the importance of screening patients with early-onset disease for mutations in cancer predisposition genes. Germline screening should be encouraged in early-onset patients to provide personalized medicine and improve patient outcomes.


Asunto(s)
Angiomiolipoma/genética , Pueblo Asiatico/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Adolescente , Adulto , Proteína BRCA2/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Fumarato Hidratasa/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Análisis de Secuencia de ADN , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adulto Joven
12.
N Engl J Med ; 374(2): 135-45, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536169

RESUMEN

BACKGROUND: Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. METHODS: We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).


Asunto(s)
Carcinoma Papilar/metabolismo , Neoplasias Renales/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma Papilar/genética , Islas de CpG/fisiología , Metilación de ADN , Humanos , Neoplasias Renales/genética , MicroARNs/química , Factor 2 Relacionado con NF-E2/genética , Fenotipo , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/química , ARN Neoplásico/química , Análisis de Secuencia de ARN , Transducción de Señal/fisiología
13.
Genes Chromosomes Cancer ; 56(6): 484-492, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28196407

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a familial cancer syndrome associated with the development of cutaneous and uterine leiomyomas, and an aggressive form of type 2 papillary kidney cancer. HLRCC is characterized by germline mutation of the FH gene. This study evaluated the prevalence and clinical phenotype of FH deletions in HLRCC patients. Patients with phenotypic manifestations consistent with HLRCC who lacked detectable germline FH intragenic mutations were investigated for FH deletion. A series of 28 patients from 13 families were evaluated using a combination of a comparative genomic hybridization (CGH) array and/or CLIA-approved FH deletion/duplication analyses. Thirteen distinct germline deletions were identified in the 13 UOB families, including 11 complete FH gene deletions and 2 partial FH gene deletions. The size of eight evaluated complete FH deletions varied from ∼4.74 Mb to 249 kb, with all deletions resulting in additional gene losses. Two partial FH gene deletions were identified, with one resulting in loss of exon 1 and the upstream region of the FH gene only. Kidney cancer was diagnosed in 9 (32%) of 28 patients and 7 (54%) of 13 families possessing either complete or partial FH deletions. Cutaneous and uterine leiomyomas were observed at similar rates to those in FH point mutation families. Complete or partial FH gene alterations in HLRCC families are associated with all of the canonical HLRCC manifestations, including type 2 papillary kidney cancer and should be screened for in any patient at-risk for this disorder.


Asunto(s)
Carcinoma de Células Renales/genética , Fumarato Hidratasa/genética , Eliminación de Gen , Genoma , Mutación de Línea Germinal , Neoplasias Renales/genética , Leiomiomatosis/genética , Fenotipo , Femenino , Humanos , Hibridación Fluorescente in Situ , Masculino , Linaje
14.
Genes Chromosomes Cancer ; 56(10): 719-729, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28736828

RESUMEN

Chromophobe renal cell carcinoma (ChRCC) represents 5% of all RCC cases and frequently demonstrates multiple chromosomal losses and an indolent pattern of local growth, but can demonstrate aggressive features and resistance to treatment in a metastatic setting. Cell line models are an important tool for the investigation of tumor biology and therapeutic drug efficacy. Currently, there are few ChRCC-derived cell lines and none is well characterized. This study characterizes a novel ChRCC-derived cell line model, UOK276. A large ChRCC tumor with regions of sarcomatoid differentiation was used to establish a spontaneously immortal cell line, UOK276. UOK276 was evaluated for chromosomal, mutational, and metabolic aberrations. The UOK276 cell line is hyperdiploid with a modal number of 49 chromosomes per cell, and evidence of copy-neutral loss of heterozygosity, as opposed to the classic pattern of ChRCC chromosomal losses. UOK276 demonstrated a TP53 missense mutation, expressed mutant TP53 protein, and responded to treatment with a small-molecule therapeutic agent, NSC319726, designed to reactivate mutated TP53. Xenograft tumors grew in nude mice and provide an in vivo animal model for the investigation of potential therapeutic regimes. The xenograft pathology and genetic analysis suggested that UOK276 was derived from the sarcomatoid region of the original tumor. In summary, UOK276 represents a novel in vitro and in vivo cell line model for aggressive, sarcomatoid-differentiated, TP53 mutant ChRCC. This preclinical model system could be used to investigate the novel biology of aggressive, sarcomatoid ChRCC and evaluate the new therapeutic regimes.


Asunto(s)
Carcinoma de Células Renales/genética , Cariotipo , Neoplasias Renales/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Humanos , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Mutación Missense , Proteína p53 Supresora de Tumor/genética
16.
Semin Cancer Biol ; 23(1): 46-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22705279

RESUMEN

Kidney cancer is not a single disease; it is made up of a number of different types of cancer that occur in the kidney. Each of these different types of kidney cancer can have a different histology, have a different clinical course, can respond differently to therapy and is caused by a different gene. Kidney cancer is essentially a metabolic disease; each of the known genes for kidney cancer, VHL, MET, FLCN, TSC1, TSC2, TFE3, TFEB, MITF, fumarate hydratase (FH), succinate dehydrogenase B (SDHB), succinate dehydrogenase D (SDHD), and PTEN genes is involved in the cells ability to sense oxygen, iron, nutrients or energy. Understanding the metabolic basis of kidney cancer will hopefully provide the foundation for the development of effective forms of therapy for this disease.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma de Células Renales/genética , Ciclo del Ácido Cítrico , Humanos , Neoplasias Renales/genética , Mutación , Proteínas Proto-Oncogénicas/metabolismo , Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
18.
BMC Cancer ; 14: 506, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25012071

RESUMEN

BACKGROUND: Grade IV glioblastomas exist in two forms, primary (de novo) glioblastomas (pGBM) that arise without precursor lesions, and the less common secondary glioblastomas (sGBM) which develop from earlier lower grade lesions. Genetic heterogeneity between pGBM and sGBM has been documented as have differences in the methylation of individual genes. A hypermethylator phenotype in grade IV GBMs is now well documented however there has been little comparison between global methylation profiles of pGBM and sGBM samples or of methylation profiles between paired early and late sGBM samples. METHODS: We performed genome-wide methylation profiling of 20 matched pairs of early and late gliomas using the Infinium HumanMethylation450 BeadChips to assess methylation at >485,000 cytosine positions within the human genome. RESULTS: Clustering of our data demonstrated a frequent hypermethylator phenotype that associated with IDH1 mutation in sGBM tumors. In 80% of cases, the hypermethylator status was retained in both the early and late tumor of the same patient, indicating limited alterations to genome-wide methylation during progression and that the CIMP phenotype is an early event. Analysis of hypermethylated loci identified 218 genes frequently methylated across grade II, III and IV tumors indicating a possible role in sGBM tumorigenesis. Comparison of our sGBM data with TCGA pGBM data indicate that IDH1 mutated GBM samples have very similar hypermethylator phenotypes, however the methylation profiles of the majority of samples with WT IDH1 that do not demonstrate a hypermethylator phenotype cluster separately from sGBM samples, indicating underlying differences in methylation profiles. We also identified 180 genes that were methylated only in sGBM. Further analysis of these genes may lead to a better understanding of the pathology of sGBM vs pGBM. CONCLUSION: This is the first study to have documented genome-wide methylation changes within paired early/late astrocytic gliomas on such a large CpG probe set, revealing a number of genes that maybe relevant to secondary gliomagenesis.


Asunto(s)
Metilación de ADN , Glioblastoma/genética , Glioblastoma/patología , Islas de CpG , Progresión de la Enfermedad , Genoma Humano , Humanos , Isocitrato Deshidrogenasa/genética , Fenotipo
19.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703764

RESUMEN

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , Proteogenómica , Humanos , Proteogenómica/métodos , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Transcriptoma/genética , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
20.
Hum Mutat ; 34(12): 1650-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24000165

RESUMEN

Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene.


Asunto(s)
Genes Supresores de Tumor , Predisposición Genética a la Enfermedad , Neoplasias Renales/genética , Translocación Genética , Enzimas Ubiquitina-Conjugadoras/genética , Adulto , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 19 , Cromosomas Humanos Par 5 , Metilación de ADN , Epigénesis Genética , Proteínas F-Box/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA