Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(38): 23782-23793, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907944

RESUMEN

Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.3 strain). We identified a predominant type III interferon (IFN)-mediated innate response to HuNoV infection. Replication of both strains is sensitive to exogenous addition of IFNs, suggesting the potential of IFNs as therapeutics. To obtain insight into IFN pathway genes that play a role in the antiviral response to HuNoVs, we developed knockout (KO) HIE lines for IFN alpha and lambda receptors and the signaling molecules, MAVS, STAT1, and STAT2 An unexpected differential response of enhanced replication and virus spread was observed for GII.3, but not the globally dominant GII.4 HuNoV in STAT1-knockout HIEs compared to parental HIEs. These results indicate cellular IFN responses restrict GII.3 but not GII.4 replication. The strain-specific sensitivities of innate responses against HuNoV replication provide one explanation for why GII.4 infections are more widespread and highlight strain specificity as an important factor in HuNoV biology. Genetically modified HIEs for innate immune genes are useful tools for studying immune responses to viral or microbial pathogens.


Asunto(s)
Infecciones por Caliciviridae , Interacciones Huésped-Patógeno/inmunología , Interferones , Intestinos , Norovirus , Sistemas CRISPR-Cas , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Humanos , Interferones/genética , Interferones/metabolismo , Intestinos/inmunología , Intestinos/virología , Modelos Biológicos , Norovirus/genética , Norovirus/inmunología , Norovirus/patogenicidad , Organoides/inmunología , Organoides/virología , Análisis de Secuencia de ARN , Transcriptoma/genética , Replicación Viral
2.
PLoS Pathog ; 16(9): e1008851, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986782

RESUMEN

Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.


Asunto(s)
Adhesión Bacteriana/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Adhesinas de Escherichia coli/genética , Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Factores de Virulencia/metabolismo
3.
Pediatr Res ; 92(6): 1580-1589, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35338351

RESUMEN

BACKGROUND: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence. METHODS: C57BL6/J mice were exposed to 21% (normoxia) or 70% (hyperoxia) oxygen during postnatal days (PND) 1-14. Pups were injected with LPS (6 mg/kg) or equal PBS volume, intraperitoneally on PND 3, 5, and 7. At PND14, the lungs were collected for microbiome and metabolomic analyses (n = 5/group). RESULTS: Microbiome alpha and beta diversity were similar between groups. Metabolic changes included hyperoxia 31 up/18 down, LPS 7 up/4 down, exposure interaction 8. Hyperoxia increased Intestinimonas abundance, whereas LPS decreased Clostridiales, Dorea, and Intestinimonas; exposure interaction affected Blautia. Differential co-expression analysis on multi-omics data identified exposure-altered modules. Hyperoxia metabolomics response was integrated with a published matching transcriptome, identifying four induced genes (ALDOA, GAA, NEU1, RENBP), which positively correlated with BPD severity in a published human newborn cohort. CONCLUSIONS: We report hyperoxia and LPS lung microbiome and metabolome signatures in a clinically relevant BPD model. We identified four genes correlating with BPD status in preterm infants that are promising targets for therapy and prevention. IMPACT: Using multi-omics, we identified and correlated key biomarkers of hyperoxia and LPS on murine lung micro-landscape and examined their potential clinical implication, which shows strong clinical relevance for future research. Using a double-hit model of clinical relevance to bronchopulmonary dysplasia, we are the first to report integrated metabolomic/microbiome landscape changes and identify novel disease biomarker candidates.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Microbiota , Neumonía , Animales , Recién Nacido , Humanos , Ratones , Displasia Broncopulmonar/etiología , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Animales Recién Nacidos , Disbiosis , Lipopolisacáridos/metabolismo , Multiómica , Recien Nacido Prematuro , Pulmón/metabolismo , Neumonía/metabolismo , Inflamación/metabolismo , Metaboloma , Modelos Animales de Enfermedad
4.
Am J Respir Crit Care Med ; 204(3): 312-325, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784491

RESUMEN

Rationale: CD148/PTRJ (receptor-like protein tyrosine phosphatase η) exerts antifibrotic effects in experimental pulmonary fibrosis via interactions with its ligand syndecan-2; however, the role of CD148 in human pulmonary fibrosis remains incompletely characterized.Objectives: We investigated the role of CD148 in the profibrotic phenotype of fibroblasts in idiopathic pulmonary fibrosis (IPF).Methods: Conditional CD148 fibroblast-specific knockout mice were generated and exposed to bleomycin and then assessed for pulmonary fibrosis. Lung fibroblasts (mouse lung and human IPF lung), and precision-cut lung slices from human patients with IPF were isolated and subjected to experimental treatments. A CD148-activating 18-aa mimetic peptide (SDC2-pep) derived from syndecan-2 was evaluated for its therapeutic potential.Measurements and Main Results: CD148 expression was downregulated in IPF lungs and fibroblasts. In human IPF lung fibroblasts, silencing of CD148 increased extracellular matrix production and resistance to apoptosis, whereas overexpression of CD148 reversed the profibrotic phenotype. CD148 fibroblast-specific knockout mice displayed increased pulmonary fibrosis after bleomycin challenge compared with control mice. CD148-deficient fibroblasts exhibited hyperactivated PI3K/Akt/mTOR signaling, reduced autophagy, and increased p62 accumulation, which induced NF-κB activation and profibrotic gene expression. SDC2-pep reduced pulmonary fibrosis in vivo and inhibited IPF-derived fibroblast activation. In precision-cut lung slices from patients with IPF and control patients, SDC2-pep attenuated profibrotic gene expression in IPF and normal lungs stimulated with profibrotic stimuli.Conclusions: Lung fibroblast CD148 activation reduces p62 accumulation, which exerts antifibrotic effects by inhibiting NF-κB-mediated profibrotic gene expression. Targeting the CD148 phosphatase with activating ligands such as SDC2-pep may represent a potential therapeutic strategy in IPF.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Pulmón/metabolismo , Animales , Antibióticos Antineoplásicos/toxicidad , Autofagia/efectos de los fármacos , Autofagia/genética , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Noqueados , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Fragmentos de Péptidos/farmacología , Fenotipo , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Sindecano-2/farmacología , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
5.
Circ Res ; 124(8): 1198-1213, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30739589

RESUMEN

RATIONALE: LMNA (Lamin A/C), a nuclear membrane protein, interacts with genome through lamin-associated domains (LADs) and regulates gene expression. Mutations in the LMNA gene cause a diverse array of diseases, including dilated cardiomyopathy (DCM). DCM is the leading cause of death in laminopathies. OBJECTIVE: To identify LADs and characterize their associations with CpG methylation and gene expression in human cardiac myocytes in DCM. METHODS AND RESULTS: LMNA chromatin immunoprecipitation-sequencing, reduced representative bisulfite sequencing, and RNA-sequencing were performed in 5 control and 5 LMNA-associated DCM hearts. LADs were identified using enriched domain detector program. Genome-wide 331±77 LADs with an average size of 2.1±1.5 Mbp were identified in control human cardiac myocytes. LADs encompassed ≈20% of the genome and were predominantly located in the heterochromatin and less so in the promoter and actively transcribed regions. LADs were redistributed in DCM as evidenced by a gain of 520 and loss of 149 genomic regions. Approximately, 4500 coding genes and 800 long noncoding RNAs, whose levels correlated with the transcript levels of coding genes in cis, were differentially expressed in DCM. TP53 (tumor protein 53) was the most prominent among the dysregulated pathways. CpG sites were predominantly hypomethylated genome-wide in controls and DCM hearts, but overall CpG methylation was increased in DCM. LADs were associated with increased CpG methylation and suppressed gene expression. Integrated analysis identified genes whose expressions were regulated by LADs or CpG methylation, or by both, the latter pertained to genes involved in cell death, cell cycle, and metabolic regulation. CONCLUSIONS: LADs encompass ≈20% of the genome in human cardiac myocytes comprised several hundred coding and noncoding genes. LADs are redistributed in LMNA-associated DCM in association with markedly altered CpG methylation and gene expression. Thus, LADs through genomic alterations contribute to the pathogenesis of DCM in laminopathies.


Asunto(s)
Cardiomiopatía Dilatada/genética , Metilación de ADN , Regulación de la Expresión Génica , Lamina Tipo A/genética , Miocitos Cardíacos , Adulto , Núcleo Celular , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Islas de CpG/genética , Femenino , Heterocromatina/genética , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico , ARN/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
BMC Biol ; 18(1): 103, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814578

RESUMEN

BACKGROUND: The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. RESULTS: In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. CONCLUSIONS: Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.


Asunto(s)
Epidídimo/metabolismo , Expresión Génica , Testículo/metabolismo , Animales , Humanos , Masculino , Ratones , RNA-Seq , Reproducción
7.
Biol Reprod ; 102(1): 84-91, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403672

RESUMEN

High-throughput transcriptomics and proteomics approaches have recently identified a large number of germ cell-specific genes with many that remain to be studied through functional genetics approaches. Serine proteases (PRSS) constitute nearly one-third of all proteases, and, in our bioinformatics screens, we identified many that are testis specific. In this study, we chose to focus on Prss44, Prss46, and Prss54, which we confirmed as testis specific in mouse and human. Based on the analysis of developmental expression in the mouse, expression of all four genes is restricted to the late stage of spermatogenesis concomitant with a potential functional role in spermiogenesis, spermiation, or sperm function. To best understand the male reproductive requirement and functional roles of these serine proteases, each gene was individually ablated by CRISPR/Cas9-mediated ES cell or zygote approach. Homozygous deletion mutants for each gene were obtained and analyzed for phenotypic changes. Analyses of testis weights, testis and epididymis histology, sperm morphology, and fertility revealed no significant differences in Prss44, Prss46, and Prss54 knockout mice in comparison to controls. Our results thereby demonstrate that these genes are not required for normal fertility in mice, although do not preclude the possibility that these genes may function in a redundant manner. Elucidating the individual functional requirement or lack thereof of these novel genes is necessary to build a better understanding of the factors underlying spermatogenesis and sperm maturation, which has implications in understanding the etiology of male infertility and the development of male contraceptives.


Asunto(s)
Fertilidad/fisiología , Infertilidad Masculina/metabolismo , Serina Endopeptidasas/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Forma de la Célula/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos/fisiología , Serina Endopeptidasas/genética , Espermatozoides/citología
8.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201419

RESUMEN

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Asunto(s)
Sistemas CRISPR-Cas , Fertilidad/genética , Edición Génica , Regulación de la Expresión Génica/fisiología , Testículo/metabolismo , Animales , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 109(32): 13016-21, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22826236

RESUMEN

Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.


Asunto(s)
Transdiferenciación Celular/fisiología , Fibroblastos/citología , Mioblastos Cardíacos/citología , Proteína Proto-Oncogénica c-ets-2/metabolismo , Piel/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Transdiferenciación Celular/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Ratones , Mioblastos Cardíacos/fisiología , Reacción en Cadena de la Polimerasa , Proteína Proto-Oncogénica c-ets-2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37905101

RESUMEN

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 family of miRNAs is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the let-7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here we show that overall expression of the let-7 miRNA clusters, let-7b/let-7c2 and let-7a1/let-7f1/let-7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the let-7b/let-7c2-cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the let-7b/let-7c2-cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing let-7 in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of let-7 miRNA in T cells. Overall, our findings shed light on the let-7/RORγt axis with let-7 acting as a molecular brake in the generation of Tc17 cells and suggests a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.

12.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722677

RESUMEN

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Asunto(s)
Diferenciación Celular , Regulación hacia Abajo , MicroARNs , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Enfisema Pulmonar , Células Th17 , Animales , Femenino , Humanos , Masculino , Ratones , Interleucina-17/metabolismo , Interleucina-17/genética , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Células Th17/inmunología , Células Th17/metabolismo
13.
Redox Biol ; 64: 102790, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348155

RESUMEN

Oxygen supplementation is life saving for premature infants and for COVID-19 patients but can induce long-term pulmonary injury by triggering inflammation, with xenobiotic-metabolizing CYP enzymes playing a critical role. Murine studies showed that CYP1B1 enhances, while CYP1A1 and CYP1A2 protect from, hyperoxic lung injury. In this study we tested the hypothesis that Cyp1b1-null mice would revert hyperoxia-induced transcriptomic changes observed in WT mice at the transcript and pathway level. Wild type (WT) C57BL/6J and Cyp1b1-null mice aged 8-10 weeks were maintained in room air (21% O2) or exposed to hyperoxia (>95% O2) for 48h. Transcriptomic profiling was conducted using the Illumina microarray platform. Hyperoxia exposure led to robust changes in gene expression and in the same direction in WT, Cyp1a1-, Cyp1a2-, and Cyp1b1-null mice, but to different extents for each mouse genotype. At the transcriptome level, all Cyp1-null murine models reversed hyperoxia effects. Gene Set Enrichment Analysis identified 118 hyperoxia-affected pathways mitigated only in Cyp1b1-null mice, including lipid, glutamate, and amino acid metabolism. Cell cycle genes Cdkn1a and Ccnd1 were induced by hyperoxia in both WT and Cyp1b1-null mice but mitigated in Cyp1b1-null O2 compared to WT O2 mice. Hyperoxia gene signatures associated positively with bronchopulmonary dysplasia (BPD), which occurs in premature infants (with supplemental oxygen being one of the risk factors), but only in the Cyp1b1-null mice did the gene profile after hyperoxia exposure show a partial rescue of BPD-associated transcriptome. Our study suggests that CYP1B1 plays a pro-oxidant role in hyperoxia-induced lung injury.


Asunto(s)
Displasia Broncopulmonar , COVID-19 , Hiperoxia , Lesión Pulmonar , Humanos , Recién Nacido , Animales , Ratones , Hiperoxia/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ratones Endogámicos C57BL , COVID-19/metabolismo , Oxígeno/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/complicaciones , Ratones Noqueados , Pulmón/metabolismo , Animales Recién Nacidos
14.
iScience ; 26(2): 105965, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824274

RESUMEN

Despite the knowledge that protein translation and various metabolic reactions that create and sustain cellular life occur in the cytoplasm, the structural organization within the cytoplasm remains unclear. Recent models indicate that cytoplasm contains viscous fluid and elastic solid phases. We separated these viscous fluid and solid elastic compartments, which we call the cytosol and cytomatrix, respectively. The distinctive composition of the cytomatrix included structural proteins, ribosomes, and metabolome enzymes. High-throughput analysis revealed unique biosynthetic pathways within the cytomatrix. Enrichment of biosynthetic pathways in the cytomatrix indicated the presence of immobilized biocatalysis. Enzymatic immobilization and segregation can surmount spatial impediments, and the local pathway segregation may form cytoplasmic organelles. Protein translation was reprogrammed within the cytomatrix under the restriction of protein synthesis by drug treatment. The cytosol and cytomatrix are an elaborately interconnected network that promotes operational flexibility in healthy cells and the survival of malignant cells.

15.
Cancer Med ; 12(1): 584-596, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35676822

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS: We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS: We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS: We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kß inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Transcriptoma , Adenocarcinoma del Pulmón/genética , Perfilación de la Expresión Génica
16.
J Cardiovasc Aging ; 2(3)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35891706

RESUMEN

Introduction: Mutations in the LMNA gene, encoding Lamin A/C (LMNA), are established causes of dilated cardiomyopathy (DCM). The phenotype is typically characterized by progressive cardiac conduction defects, arrhythmias, heart failure, and premature death. DCM is primarily considered a disease of cardiac myocytes. However, LMNA is also expressed in other cardiac cell types, including fibroblasts. Aim: The purpose of the study was to determine the contribution of the fibroblasts to DCM caused by LMNA deficiency. Methods and Results: The Lmna gene was deleted by crossing the platelet-derived growth factor receptor α-Cre recombinase (Pdgfra-Cre) and floxed Lmna (Lmna F/F) mice. The LMNA protein was nearly absent in ~80% of the cardiac fibroblasts and ~25% of cardiac myocytes in the Pdgfra-Cre:Lmna F/F mice. The Pdgfra-Cre:Lmna F/F mice showed an early phenotype characterized by cardiac conduction defects, arrhythmias, cardiac dysfunction, myocardial fibrosis, apoptosis, and premature death within the first six weeks of life. The Pdgfra-Cre:Lmna wild type/F (Lmna W/F) mice also showed a similar but slowly evolving phenotype that was expressed within one year of age. RNA sequencing of LMNA-deficient and wild-type cardiac fibroblasts identified differential expression of ~410 genes, which predicted activation of the TP53 and TNFA/NFκB and suppression of the cell cycle pathways. In agreement with these findings, levels of phospho-H2AFX, ATM, phospho-TP53, and CDKN1A, markers of the DNA damage response (DDR) pathway, were increased in the Pdgfra-Cre:Lmna F/F mouse hearts. Moreover, expression of senescence-associated beta-galactosidase was induced and levels of the senescence-associated secretory phenotype (SASP) proteins TGFß1, CTGF (CCN2), and LGLAS3 were increased as well as the transcript levels of additional genes encoding SASP proteins in the Pdgfra-Cre:Lmna F/F mouse hearts. Finally, expression of pH2AFX, a bonafide marker of the double-stranded DNA breaks, was increased in cardiac fibroblasts isolated from the Pdgfra-Cre:Lmna F/F mouse hearts. Conclusion: Deletion of the Lmna gene in fibroblasts partially recapitulates the phenotype of the LMNA-associated DCM, likely through induction of double-stranded DNA breaks, activation of the DDR pathway, and induction of expression of the SASP proteins. The findings indicate that the phenotype in the LMNA-associated DCM is the aggregate consequence of the LMNA deficiency in multiple cardiac cells, including cardiac fibroblasts.

17.
Sci Rep ; 12(1): 5351, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354884

RESUMEN

The constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR. Here, LNCaP and VCaP cell lines in which AR-V7 expression can be induced to match the level of AR, were used to compare the activities of AR and AR-V7. The two AR isoforms shared many targets, but overall had distinct transcriptomes. Optimal induction of novel targets sometimes required more receptor isoform than classical targets such as PSA. The isoforms displayed remarkably different cistromes with numerous differential binding sites. Some of the unique AR-V7 sites were located proximal to the transcription start sites (TSS). A de novo binding motif similar to a half ARE was identified in many AR-V7 preferential sites and, in contrast to conventional half ARE sites that bind AR-V7, FOXA1 was not enriched at these sites. This supports the concept that the AR isoforms have unique actions with the potential to serve as biomarkers or novel therapeutic targets.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Antagonistas de Andrógenos , Cromatina , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo
18.
Cardiovasc Res ; 118(6): 1466-1478, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132777

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure, and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. METHODS AND RESULTS: Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and five control samples were analysed by RNA-Seq (discovery group). These cases presented with cardiac arrhythmias and had a normal right ventricular function. The RNA-Seq analysis identified ∼5000 differentially expressed genes (DEGs), which predicted suppression of the Hippo and canonical WNT pathways, among others. Dysregulated genes and pathways, identified by RNA-Seq, were tested for validation in the right and left ventricular tissues from five independent autopsy-confirmed ACM cases with defined mutations (validation group), who were victims of SCD and had no history of heart failure. Protein levels and nuclear localization of the cWNT and Hippo pathway transcriptional regulators were reduced in the right and left ventricular validation samples. In contrast, levels of acetyltransferase EP300, known to suppress the Hippo and canonical WNT pathways, were increased and its bona fide target TP53 was acetylated. RNA-Seq data identified apical junction, reflective of cell-cell attachment, as the most disrupted biological pathway, which were corroborated by disrupted desmosomes and intermediate filament structures. Moreover, the DEGs also predicted dysregulation of over a dozen canonical signal transduction pathways, including the Tec kinase and integrin signalling pathways. The changes were associated with increased apoptosis and fibro-adipogenesis in the ACM hearts. CONCLUSION: Altered apical junction structures are associated with activation of the EP300-TP53 and suppression of the Hippo/cWNT pathways in human ACM caused by defined mutations in the absence of an overt heart failure. The findings implicate altered mechanotransduction in the pathogenesis of ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Insuficiencia Cardíaca , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Muerte Súbita Cardíaca/etiología , Proteína p300 Asociada a E1A/metabolismo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Humanos , Mecanotransducción Celular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt
19.
Sci Rep ; 12(1): 2847, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181688

RESUMEN

Rheumatoid arthritis (RA)-associated interstitial lung disease (RA-ILD) is the most common pulmonary complication of RA, increasing morbidity and mortality. Anti-citrullinated protein antibodies have been associated with the development and progression of both RA and fibrotic lung disease; however, the role of protein citrullination in RA-ILD remains unclear. Here, we demonstrate that the expression of peptidylarginine deiminase 2 (PAD2), an enzyme that catalyzes protein citrullination, is increased in lung homogenates from subjects with RA-ILD and their lung fibroblasts. Chemical inhibition or genetic knockdown of PAD2 in RA-ILD fibroblasts attenuated their activation, marked by decreased myofibroblast differentiation, gel contraction, and extracellular matrix gene expression. Treatment of RA-ILD fibroblasts with the proteoglycan syndecan-2 (SDC2) yielded similar antifibrotic effects through regulation of PAD2 expression, phosphoinositide 3-kinase/Akt signaling, and Sp1 activation in a CD148-dependent manner. Furthermore, SDC2-transgenic mice exposed to bleomycin-induced lung injury in an inflammatory arthritis model expressed lower levels of PAD2 and were protected from the development of pulmonary fibrosis. Together, our results support a SDC2-sensitive profibrotic role for PAD2 in RA-ILD fibroblasts and identify PAD2 as a promising therapeutic target of RA-ILD.


Asunto(s)
Artritis Reumatoide/genética , Lesión Pulmonar/genética , Arginina Deiminasa Proteína-Tipo 2/genética , Fibrosis Pulmonar/genética , Sindecano-2/genética , Animales , Anticuerpos Antiproteína Citrulinada/genética , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Bleomicina/toxicidad , Citrulinación/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Factor de Transcripción Sp1/genética
20.
Nat Commun ; 13(1): 494, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078977

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Células A549 , Células Epiteliales Alveolares/clasificación , Animales , Células Cultivadas , Análisis por Conglomerados , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Humanos , Pulmón/citología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/patología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA