Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; 21(7): e202302065, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768437

RESUMEN

Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1ß and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.


Asunto(s)
Carragenina , Modelos Animales de Enfermedad , Edema , Inflamación , Polifenoles , Vitis , Animales , Polifenoles/farmacología , Polifenoles/aislamiento & purificación , Polifenoles/química , Ratones , Vitis/química , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Edema/tratamiento farmacológico , Edema/inducido químicamente , Peroxidación de Lípido/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Relación Dosis-Respuesta a Droga , Peroxidasa/metabolismo , Citocinas/metabolismo
2.
Phytochem Anal ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693046

RESUMEN

INTRODUCTION: Pectin-oligosaccharides (POS) serve diverse purposes as a food ingredient, antimicrobial and biostimulant in plants, and their functionality is linked to the degree of esterification. Grape and broccoli wastes emerge as environmentally friendly alternatives to obtaining pectin, serving as a sustainable source to producing POS. For example, microwaves have proven to be an effective and sustainable method to extract polysaccharides from plant matrices. OBJECTIVE: This work aims to use grape and broccoli wastes as alternative sources for obtaining pectin by microwave-assisted extraction and biotransformation into POS, which possess biological properties. MATERIAL AND METHODS: The extraction conditions were identified at a power of 400 W, 300 s for the extraction of pectin from grape pomace and broccoli waste. Biotransformation of pectins into POS, using commercial enzyme preparations (Viscozyme L and Pectinase). Characterisation was carried out by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. RESULTS: Physicochemical analysis indicated grape pomace and broccoli waste pectins had galacturonic acid content of 63.81 ± 1.67 and 40.83 ± 2.85 mg 100 mg-1, low degree of esterification of 34.89% and 16.22%, respectively. Biotransformation of pectins into POS resulted in a 20% hydrolysis rate. The main enzymatic activity was polygalacturonase for the degradation of the main structure of the pectin. CONCLUSION: Production of POS from agro-industrial wastes by emerging technologies, such as the combined use of microwave-assisted extraction and enzymatic processes, represents an alternative method for the generation of bioactive compounds with distinctive properties suitable for different applications of interest.

3.
J Environ Sci Health B ; 58(2): 195-202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896588

RESUMEN

Five samples of agricultural soil and five samples of Aloe barbadensis (P. Mill., 1768) plants with symptoms of wilt and root necrosis were collected in five localities of the state of Tamaulipas, México. The aims of this study were the morphological identification, molecular identification and in vitro evaluation of the antagonistic activity of Trichoderma spp. on Fusarium spp. Four strains of Trichoderma asperellum, one strain of Trichoderma harzianum and five strains of Fusarium oxysporum were identified by morphological and molecular methods. The evaluation of the antagonistic activity of T. harzianum isolate (TP) showed the highest inhibition in Fusarium spp. (78.80%). The evaluation of the antagonistic activity of Trichoderma spp. extracts in Fusarium spp. did not show significant differences between treatments (P ≤ 0.05), with Trichoderma growth percentages that oscillated between 81.08 and 94.38%. The native isolate of T. harzianum (TP) showed significant competitive capability against the mycelial growth of F. oxysporum. Trichoderma species are promising agents of biological control in the central area of the State Tamaulipas, Mexico.


Asunto(s)
Fusarium , Trichoderma , Suelo , Microbiología del Suelo , México , Enfermedades de las Plantas/prevención & control
4.
J Food Sci Technol ; 60(4): 1265-1273, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36936110

RESUMEN

Fructans are a polydisperse mixture of fructose polymers generally bound to a glucose molecule, in recent years, interest in their use has grown, either as a potential ingredient in functional foods or for their technological properties. The diversity of its applications lies in its structure and origin. Until now, the scientific approach has been more focused on inulin-type fructans and not so much on the effect of those of mixed branched structure as agave fructans. These have a complex structure with the presence of ß (2 - 1) and ß (2 - 6) bonds that give it prebiotic properties. In this context, a review is made of the general processes of extraction of agave fructans, as well as their technological functionality in the obtaining of base structures for the development of food products.

5.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268692

RESUMEN

Rambutan (Nephelium lappaceum L.) is a tropical fruit from Asia which has become the main target of many studies involving polyphenolic analysis. Mexico produces over 8 million tons per year of rambutan, generating a huge amount of agro-industrial waste since only the pulp is used and the peel, which comprises around 45% of the fruit's weight, is left behind. This waste can later be used in the recovery of polyphenolic fractions. In this work, emerging technologies such as microwave, ultrasound, and the hybridization of both were tested in the extraction of phenolic compounds from Mexican rambutan peel. The results show that the hybrid technology extraction yielded the highest polyphenolic content (176.38 mg GAE/g of dry rambutan peel). The HPLC/MS/ESI analysis revealed three majoritarian compounds: geraniin, corilagin, and ellagic acid. These compounds explain the excellent results for the biological assays, namely antioxidant activity evaluated by the DPPH, ABTS, and LOI (Lipid oxidation inhibition) assays that exhibited great antioxidant capacity with IC50 values of 0.098, 0.335, and 0.034 mg/mL respectively, as well as prebiotic activity demonstrated by a µMax (maximum growth) of 0.203 for Lactobacillus paracasei. Lastly, these compounds have shown no hemolytic activity, opening the door for the elaboration of different products in the food, cosmetic, and pharmaceutical industries.


Asunto(s)
Sapindaceae , Frutas/química , Taninos Hidrolizables/análisis , Taninos Hidrolizables/farmacología , México , Microondas , Extractos Vegetales/química , Sapindaceae/química
6.
Int Microbiol ; 24(1): 37-45, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32705496

RESUMEN

Penicillin acylases (penicillin amidohydrolase, EC 3.5.1.11) are a group of enzymes with many applications within the pharmaceutical industry, and one of them is the production of semi-synthetic beta-lactam antibiotics. This enzyme is mainly produced by bacteria but also by some fungi. In the present study, the filamentous fungus Mucor griseocyanus was used to produce penicillin acylase enzyme (PGA). Its ability to express PGA enzyme in submerged fermentation process was assessed, finding that this fungal strain produces the biocatalyst of interest in an extracellular way at a level of 570 IU/L at 72 h of fermentation; in this case, a saline media using lactose as carbon source and penicillin G as inducer was employed. In addition, a DNA fragment (859 bp) of the pga from a pure Mucor griseocyanus strain was amplified, sequenced, and analyzed in silico. The partial sequence of pga identified in the fungi showed high identity percentage with penicillin G acylase sequences deposited in NCBI through BLAST, especially with the ß subunit of PGA from the Alcaligenes faecalis bacterium¸ which is a region involved in the catalytic function of this protein. Besides, the identification of domains in the penicillin G acylase sequence of Mucor griseocyanus showed three conserved regions of this protein. The bioinformatic results support the identity of the gen as penicillin G acylase. This is the first report that involves sequencing and in silico analysis of Mucor griseocyanus strain gene encoding PGA.


Asunto(s)
Proteínas Fúngicas/metabolismo , Mucor/enzimología , Penicilina Amidasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Biocatálisis , Fermentación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mucor/clasificación , Mucor/genética , Mucor/metabolismo , Penicilina Amidasa/química , Penicilina Amidasa/metabolismo , Filogenia , Dominios Proteicos , Alineación de Secuencia
7.
J Environ Sci Health B ; 56(12): 1023-1030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34783634

RESUMEN

The objective of this study was to evaluate the insecticidal activity of the polyphenolic compounds found in neem on S. frugiperda larvae. Three neem extracts (1:12 (m/v) with 70% ethanol, 1:12 (m/v) with 0% ethanol (only water), and 1:4 (m/v) with 0% ethanol) were employed. Subsequently, the extraction of phytochemical compounds of each extract was performed using ultrasound and microwave technologies simultaneously. The compound characterization was performed by HPLC-mass. In addition, the insecticidal evaluation of the neem extract was performed against S. frugiperda of the second-stage larvae. The extracts were applied by spraying the larvae according to each bioassay. Results showed that the extract obtained with a 1:12 (m/v) relationship and 70% ethanol was effective for the control of S. frugiperda larvae. In this extract, the predominant organic compound families were: methoxyflavones, flavonols, hydroxycoumarins, anthocyanins, methoxycinnamic acid, and alkylflavones. Phytochemical compounds obtained from neem seeds with environmentally friendly solvents and alternative technologies (ultrasound and microwave) have potent insecticidal activity against S. frugiperda larvae.


Asunto(s)
Azadirachta , Insecticidas , Animales , Antocianinas , Azadirachta/química , Humanos , Insecticidas/química , Insecticidas/farmacología , Larva , Semillas , Spodoptera
8.
Pak J Pharm Sci ; 34(6): 2181-2189, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35034879

RESUMEN

Polyphenols may be an effective therapy for both the prevention and treatment of cancer. Previous studies have found that these compounds may inactive Hela cells, which may even be converted into a normal cells post-treatment. The present study extracted phenolic compounds from pomegranate peel, with the polyphenols then purified using different solvents and identified by means of high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS). Once the phenolic compounds had been purified, we evaluated their cytotoxic effects on both the Hela and NIH-3T3 cell lines, on which an apoptosis assay was also carried out. Additionally, apoptosis assay was carried out on Hela and NIH-3T3. Lastly, the proteome profile was analysed via two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). We isolated and then purified punicalagin and ellagic acid (EA) from pomegranate peel, with both compounds likely to have a cytotoxic effect on Hela and NIH-3T3. However, this effect depends on both concentration and exposure time. Results obtained using a Cayman commercial assay kit suggests that punicalin and EA regulate the apoptosis on the Hela and NIH-3T3 cell lines. Finally, we observed that polyphenols compounds regulate the expression of proteins related to apoptosis. In conclusion, punicalin and EA have a cytotoxic effect on Hela and, furthermore, reactive the apoptotic pathway in this cell.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Ácido Elágico/farmacología , Taninos Hidrolizables/farmacología , Extractos Vegetales/farmacología , Granada (Fruta) , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Ácido Elágico/aislamiento & purificación , Femenino , Células HeLa , Humanos , Taninos Hidrolizables/aislamiento & purificación , Ratones , Células 3T3 NIH , Extractos Vegetales/aislamiento & purificación , Granada (Fruta)/química , Proteoma , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
9.
Plant Foods Hum Nutr ; 75(1): 96-102, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31853903

RESUMEN

Agave bagasse is a fibrous-like material obtained during aguamiel extraction, which is also in contact with indigenous microbiota of agave plant during aguamiel fermentation. This plant is a well-known carrier of the prebiotic fructan-type carbohydrates, which have multiple ascribable health benefits. In the present work, the potential of ashen and green agave bagasse as functional ingredients in supplemented cookies was studied. For its application, the chemical, functional, properties of agave bagasses and formulated cookies were evaluated, as well as the physical properties of cookies. Chemical characterization was carried out by the proximate analysis of both bagasses and cookies, besides, the analysis of oligosaccharides was made by thin-layer chromatography and high-performance anion-exchange chromatography. In the same way, functional properties such as oil holding capacity, organic molecule absorption capacity, swelling capacity, and water holding capacity were analyzed in both agave bagasses and supplemented cookies. Finally, modifications in color and texture due to bagasse addition was studied through an analysis of total color difference and a penetrometric test, respectively. In this sense, ashen and green agave bagasses demonstrated chemical and functional properties for use in the food industry, since they increased oil holding capacity of cookies and transferred prebiotic fructooligosaccharides to both agave bagasse formulations, which remain active as a prebiotic ingredient in cookies after in vitro digestion and cookie manufacture, including thermal treatment. Hence, agave bagasse could be considered a valuable alternative for the addition of the nutritionally-relevant dietary fiber in healthier foods.


Asunto(s)
Agave , Celulosa , Alimentos Fortificados , Fructanos , Prebióticos
10.
Rev Argent Microbiol ; 50(2): 173-177, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29162302

RESUMEN

Mango fruits (Mangifera indica L.) are highly perishable, causing postharvest losses and producing agroindustrial waste. In the present work, native yeasts were used to evaluate ethanol production in overripe mango pulp. The two isolated strains showed similar sequences in the 18S rDNA region corresponding to Kluyveromyces marxianus, being different to the data reported in the NCBI database. Values of up to 5% ethanol (w/v) were obtained at the end of fermentation, showing a productivity of 4g/l/day, a yield of up to 49% of ethanol and a process efficiency of 80%. These results represent a viable option for using the surplus production and all the fruits that have suffered mechanical injury that are not marketable and are considered as agroindustrial waste, thus achieving greater income and less postharvest losses.


Asunto(s)
Etanol , Mangifera , Fermentación , Frutas , Kluyveromyces
11.
Crit Rev Biotechnol ; 36(2): 259-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25519697

RESUMEN

Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.


Asunto(s)
Biotecnología , Oligosacáridos , Prebióticos
12.
J Basic Microbiol ; 56(4): 329-36, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26915983

RESUMEN

Our research group has found preliminary evidences of the fungal biodegradation pathway of ellagitannins, revealing first the existence of an enzyme responsible for ellagitannins degradation, which hydrolyzes pomegranate ellagitannins and it was called ellagitannase or elagitannin acyl hydrolase. However, it is necessary to generate new and clear information in order to understand the ellagitannin degradation mechanisms. This work describes the distinctive and unique features of ellagitannin metabolism in fungi. In this study, hydrolysis of pomegranate ellagitannins by Aspergillus niger GH1 was studied by solid-state culture using polyurethane foam as support and pomegranate ellagitannins as substrate. The experiment was performed during 36 h. Results showed that ellagitannin biodegradation started after 6 h of fermentation, reaching the maximal biodegradation value at 18 h. It was observed that ellagitannase activity appeared after 6 h of culture, then, the enzymatic activity was maintained up to 24 h of culture reaching 390.15 U/L, after this period the enzymatic activity decreased. Electrophoretic band for ellagitannase was observed at 18 h. A band obtained using non-denaturing electrophoresis was identified as ellagitannase, then, a tandem analysis to reveal the ellagitannase activity was performed using Petri plate with pomegranate ellagitannins. The extracts were analyzed by HPLC/MS to evaluate ellagitannins degradation. Punicalin, gallagic acid, and ellagic acid were obtained from punicalagin. HPLC/MS analysis identified the gallagic acid as an intermediate molecule and immediate precursor of ellagic acid. The potential application of catabolic metabolism of ellagitannin hydrolysis for ellagic acid production is outlined.


Asunto(s)
Aspergillus niger/metabolismo , Reactores Biológicos , Taninos Hidrolizables/metabolismo , Aspergillus niger/enzimología , Biodegradación Ambiental , Ácido Elágico/química , Ácido Elágico/metabolismo , Activación Enzimática , Fermentación , Taninos Hidrolizables/química , Lythraceae/química , Lythraceae/metabolismo , Redes y Vías Metabólicas , Extractos Vegetales/química
13.
Rev Argent Microbiol ; 48(1): 71-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26916811

RESUMEN

Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid.


Asunto(s)
Aspergillus niger/efectos de los fármacos , Aspergillus niger/metabolismo , Ácido Elágico/metabolismo , Taninos Hidrolizables/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Larrea , Lythraceae , Vaccinium macrocarpon
14.
Microb Cell Fact ; 14: 209, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26715179

RESUMEN

BACKGROUND: Tannase is an enzyme that catalyses the breakdown of ester bonds in gallotannins such as tannic acid. In recent years, the interest on bacterial tannases has increased because of its wide applications. The lactic acid bacteria (LAB) plays an important role in food tannin biotransformation, it has the ability of hydrolyse tannins in ruminants intestine. The finding of tannin hydrolysis by LAB has sparked their use as tannase producer. RESULTS: The bacterial strains used in the present work were identified as Bacillus subtilis AM1 and Lactobacillus plantarum CIR1. The maximal tannase production levels were 1400 and 1239 U/L after 32 and 36 h of fermentation respectively, for B. subtilis AM1 and L. plantarum CIR1. Maximum gallic acid release was 24.16 g/L for B. subtilis AM1 and 23.73 g/L for L. plantarum CIR1. HPLC analysis showed the formation of another peaks in the retention time range of 9-14 min, which could be attributed to the formation of di or tri-galloyl glucose. CONCLUSIONS: According to database, the strains were identified as Bacillus subtilis AM1 and Lactobacillus plantarum CIR1. In conclusion, both strains had the capability to produce good titres of extracellular tannase and release gallic acid.


Asunto(s)
Bacillus/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Ácido Gálico/metabolismo , Fermentación
15.
Phytochem Anal ; 25(5): 439-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24692153

RESUMEN

INTRODUCTION: There is increasing interest in phenolic compounds around the world because of their potential positive impact on human health. Phenolic compounds are largely found in fruits and vegetables. Extraction of phenolic compounds is a very important step in their recovery. The newly developed technique of ultrasound-assisted extraction (UAE) appears to be an advantageous alternative compared with conventional techniques, because it is simple and environmental friendly. The potential of UAE needs to be evaluated in each plant in order to demonstrate its efficiency. OBJECTIVE: The objective of the present study was to compare a conventional method and UAE on the extraction efficiency of phenolic compounds from Jatropha dioica, Fluorensia cernua, Turnera diffusa and Eucalyptus camaldulensis plants and evaluate the in vitro anti-oxidant potential. METHODS: Validation of the new method was carried out using mixed-model methodology and regression analysis. Feasibility of this new method was shown and applied using several plants extracts obtained by different extraction methods from semi-arid Mexican plants, which were characterised by high levels of polyphenols. Additionally, the anti-oxidant potential of these extracts was determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. RESULTS: Results showed that the new microplate method can be used to determine total phenolic content in plant extracts. Additionally, an alternative extraction method by ultrasound was less efficient compared with the conventional method. CONCLUSION: The tested plants are good candidates to obtain nutraceuticals and functional food ingredients.


Asunto(s)
Magnoliopsida/química , Fenoles/química , Extractos Vegetales/química , Fraccionamiento Químico , Reproducibilidad de los Resultados
16.
Nat Prod Res ; : 1-7, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315566

RESUMEN

Pomegranate peel (PP) and coffee pulp (CP) are by-products of the food industry that can cause environmental pollution if not handled adequately. These by-products contain a significant amount of polyphenolic compounds which have antioxidant and possibly anticancer properties. We investigated the antiproliferative and cytotoxic activities of polyphenols from PP, CP and a 50-50% mixture of both against HeLa, A549, MDA-MB and Hek-293 cells. The total phenolic content of the PP and CP extracts was determined by high performance liquid chromatography/electrospray ionisation/mass spectrometry, and the antiproliferative and cytotoxic potentials were evaluated by MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) and Lactate Dehydogenase assays, respectively. Results showed antiproliferative and cytotoxic effects of polyphenols from PP and CP when administered at different concentrations or mixtures on HeLa, A549 and MDA-MB cells. No significant antiproliferative effects were observed on Hek-293 cells treated under similar conditions. These results suggest the potential of PP and CP polyphenols, individually or in combination, to modulate biological mechanisms involved in cervical, breast and lung cancer.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38183604

RESUMEN

The present study aims to obtain manganese ferrite nanoparticles functionalized with chitosan (C-MNP) or ethylenediamine (E-MNP) by coprecipitation and polyol one-step methods, characterize their interaction with S. griseus demonstrating cell immobilization, and evaluate the antimicrobial activity of the free cell extracts obtained from immobilized S. griseus fermentation in the presence of different concentrations of MNP. The adsorption isotherms were analyzed mathematically using Langmuir and Freundlich models. The highest coefficient of determination (R2) for the S. griseus cell adsorption isotherm with C-MNP was observed with a linear function of the Langmuir model. The adsorption isotherm of S. griseus cells with E-MNP was better fitted to the Freundlich model. Cell immobilization by adsorption on magnetic nanoparticles was demonstrated in both cases. Different concentrations of C-MNP and E-MNP were used in fermentations to prepare cell-free extracts with antifungal activity. The best results were obtained with E-MNP, with a 91.5% inhibition of radial fungal growth. Magnetic nanoparticles offer potential applications in different fields and easy biomass separation.

19.
Heliyon ; 9(2): e13491, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36846651

RESUMEN

Protein hydrolysates are a promising source of bioactive peptides. One strategy by which they can be obtained is fermentation. This method uses the proteolytic system of microorganisms to hydrolyze the parental protein. Fermentation is a little-explored method for obtaining protein hydrolysates from amaranth. Different strains of lactic acid bacteria (LAB) and Bacillus species isolated from goat milk, broccoli, aguamiel, and amaranth flour were used in this work. First, the total protein degradation (%TPD) of amaranth demonstrated by the strains was determined. The results ranged from 0 to 95.95%, the strains that produced a higher %TPD were selected. These strains were identified by molecular biology and were found to correspond to the genera Enterococcus, Lactobacillus, Bacillus, and Leuconostoc. Fermentation was carried out with amaranth flour and the selected strains. After this process, water/salt extracts (WSE) containing the released protein hydrolysates were obtained from amaranth doughs. The peptide concentration was measured by the OPA method. The antioxidant, antihypertensive and antimicrobial activity of the WSE was evaluated. In the FRAP test, the best WSE was LR9 with a concentration of 1.99 µMTE/L ± 0.07. In ABTS, 18C6 obtained the highest concentration with 19.18 µMTE/L ± 0.96. In the DPPH test, there was no significant difference. In terms of antihypertensive activity, inhibition percentages ranging from 0 to 80.65% were obtained. Some WSE were found to have antimicrobial properties against Salmonella enterica and Listeria monocytogenes. Fermentation of amaranth with LAB and Bacillus spp. allowed the release of protein hydrolysates with antioxidant, antihypertensive, and antimicrobial activity.

20.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36670990

RESUMEN

Polyphenols are a broad group of bioactive phytochemicals with powerful antioxidant, anti-inflammatory, immunomodulatory, and antiviral activities. Numerous studies have demonstrated that polyphenol extracts obtained from natural sources can be used for the prevention and treatment of cancer. Pomegranate peel extract is an excellent source of polyphenols, such as punicalagin, punicalin, ellagic acid, and caffeic acid, among others. These phenolic compounds have antineoplastic activity in in vitro models of cervical cancer through the regulation of cellular redox balance, induction of apoptosis, cell cycle arrest, and modulation of different signaling pathways. The current review summarizes recent data from scientific reports that address the anticancer activity of the predominant polyphenol compounds present in PPE and their different mechanisms of action in cervical cancer models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA