Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 421, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940845

RESUMEN

BACKGROUND: In proteomics, the interpretation of mass spectra representing peptides carrying multiple complex modifications remains challenging, as it is difficult to strike a balance between reasonable execution time, a limited number of false positives, and a huge search space allowing any number of modifications without a priori. The scientific community needs new developments in this area to aid in the discovery of novel post-translational modifications that may play important roles in disease. RESULTS: To make progress on this issue, we implemented SpecGlobX (SpecGlob eXTended to eXperimental spectra), a standalone Java application that quickly determines the best spectral alignments of a (possibly very large) list of Peptide-to-Spectrum Matches (PSMs) provided by any open modification search method, or generated by the user. As input, SpecGlobX reads a file containing spectra in MGF or mzML format and a semicolon-delimited spreadsheet describing the PSMs. SpecGlobX returns the best alignment for each PSM as output, splitting the mass difference between the spectrum and the peptide into one or more shifts while considering the possibility of non-aligned masses (a phenomenon resulting from many situations including neutral losses). SpecGlobX is fast, able to align one million PSMs in about 1.5 min on a standard desktop. Firstly, we remind the foundations of the algorithm and detail how we adapted SpecGlob (the method we previously developed following the same aim, but limited to the interpretation of perfect simulated spectra) to the interpretation of imperfect experimental spectra. Then, we highlight the interest of SpecGlobX as a complementary tool downstream to three open modification search methods on a large simulated spectra dataset. Finally, we ran SpecGlobX on a proteome-wide dataset downloaded from PRIDE to demonstrate that SpecGlobX functions just as well on simulated and experimental spectra. We then carefully analyzed a limited set of interpretations. CONCLUSIONS: SpecGlobX is helpful as a decision support tool, providing keys to interpret peptides carrying complex modifications still poorly considered by current open modification search software. Better alignment of PSMs enhances confidence in the identification of spectra provided by open modification search methods and should improve the interpretation rate of spectra.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Programas Informáticos , Algoritmos
2.
J Biol Chem ; 298(12): 102707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402445

RESUMEN

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Asunto(s)
Chondrus , Rhodophyta , Chondrus/genética , Rhodophyta/genética , Polisacáridos , Glicósido Hidrolasas , Biología
3.
J Am Chem Soc ; 145(28): 15180-15187, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37418616

RESUMEN

Analysis of glycans remains a difficult task due to their isomeric complexity. Despite recent progress, determining monosaccharide ring size, a type of isomerism, is still challenging due to the high flexibility of the five-membered ring (also called furanose). Galactose is a monosaccharide that can be naturally found in furanose configuration in plant and bacterial polysaccharides. In this study, we used the coupling of tandem mass spectrometry and infrared ion spectroscopy (MS/MS-IR) to investigate compounds containing galactofuranose and galactopyranose. We report the IR fingerprints of monosaccharide fragments and demonstrate for the first time galactose ring-size memory upon collision-induced dissociation (CID) conditions. The linkage of the galactose unit is further obtained by analyzing disaccharide fragments. These findings enable two possible applications. First, labeled oligosaccharide patterns can be analyzed by MS/MS-IR, yielding full sequence information, including the ring size of the galactose unit; second, MS/MS-IR can be readily applied to unlabeled oligosaccharides to rapidly identify the presence of a galactofuranose unit, as a standalone analysis or prior to further sequencing.


Asunto(s)
Galactosa , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Oligosacáridos/química , Isomerismo , Polisacáridos
4.
Anal Chem ; 95(26): 10087-10095, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37352410

RESUMEN

Although carbohydrates are the most abundant biopolymers on Earth, there is currently no streamlined method to elucidate their complete sequence. Mass spectrometry (MS) alone is blind to many cases of isomerism and thus gives incomplete information for carbohydrates. Notably, the coexistence of numerous stereoisomeric monosaccharide subunits is of special concern. Over the last 10 years, the coupling of ion mobility spectrometry (IMS) with MS has kept gaining momentum─especially with the advent of high-resolution (HR) IMS devices such as cyclic IMS (cIMS). In fact, IMS is sensitive to the gas-phase conformations of molecules and, thus, to stereoisomerisms. In this article, we present innovative ion mobility methods on a cIMS instrument that allowed us to build a database of HR-IMS fingerprints for various underivatized monosaccharide stereoisomers. The conditions were fully compatible with MS/MS fragmentation approaches. We further verify that these fingerprints afford the identification of monosaccharidic fragments released upon collisional fragmentation of oligosaccharides. Overall, these results pave the way toward direct sequencing of carbohydrates at the monosaccharide level using HR-IMS.


Asunto(s)
Monosacáridos , Espectrometría de Masas en Tándem , Estereoisomerismo , Espectrometría de Movilidad Iónica , Carbohidratos , Isomerismo
5.
Anal Chem ; 95(8): 4162-4171, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36780376

RESUMEN

Monoclonal antibodies (mAbs) currently represent the main class of therapeutic proteins. mAbs approved by regulatory agencies are selected from IgG1, IgG2, and IgG4 subclasses, which possess different interchain disulfide connectivities. Ion mobility coupled to native mass spectrometry (IM-MS) has emerged as a valuable approach to tackle the challenging characterization of mAbs' higher order structures. However, due to the limited resolution of first-generation IM-MS instruments, subtle conformational differences on large proteins have long been hard to capture. Recent technological developments have aimed at increasing available IM resolving powers and acquisition mode capabilities, namely, through the release of high-resolution IM-MS (HR-IM-MS) instruments, like cyclic IM-MS (cIM-MS). Here, we outline the advantages and drawbacks of cIM-MS for better conformational characterization of intact mAbs (∼150 kDa) in native conditions compared to first-generation instruments. We first assessed the extent to which multipass cIM-MS experiments could improve the separation of mAbs' conformers. These initial results evidenced some limitations of HR-IM-MS for large native biomolecules which possess rich conformational landscapes that remain challenging to decipher even with higher IM resolving powers. Conversely, for collision-induced unfolding (CIU) approaches, higher resolution proved to be particularly useful (i) to reveal new unfolding states and (ii) to enhance the separation of coexisting activated states, thus allowing one to apprehend gas-phase CIU behaviors of mAbs directly at the intact level. Altogether, this study offers a first panoramic overview of the capabilities of cIM-MS for therapeutic mAbs, paving the way for more widespread HR-IM-MS/CIU characterization of mAb-derived formats.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Anticuerpos Monoclonales/química , Conformación Molecular , Inmunoglobulina G/química , Disulfuros
6.
Glycobiology ; 32(4): 276-288, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34939127

RESUMEN

The extracellular matrix of brown algae represents an abundant source of fucose-containing sulfated polysaccharides (FCSPs). FCSPs include sulfated fucans, essentially composed of fucose, and highly heterogeneous fucoidans, comprising various monosaccharides. Despite a range of potentially valuable biological activities, the structures of FCSPs are only partially characterized and enzymatic tools leading to their deconstruction are rare. Previously, the enzyme MfFcnA was isolated from the marine bacterium Mariniflexile fucanivorans and biochemically characterized as an endo-α-1 â†’ 4-l-fucanase, the first member of glycoside hydrolase family 107. Here, MfFcnA was used as an enzymatic tool to deconstruct the structure of the sulfated fucans from Pelvetia canaliculata (Fucales brown alga). Oligofucans released by MfFcnA at different time points were characterized using mass spectrometry coupled with liquid chromatography and tandem mass spectrometry through Charge Transfer Dissociation. This approach highlights a large diversity in the structures released. In particular, the analyses show the presence of species with less than three sulfates per two fucose residues. They also reveal species with monosaccharides other than fucose and the occurrence of laterally branched residues. Precisely, the lateral branching is either in the form of a hexose accompanied by a trisulfated fucose nearby, or of a side chain of fucoses with a pentose as the branching point on the polymer. Overall, the results indicate that the structure of sulfated fucans from P. canaliculata is more complex than expected. They also reveal the interesting capacity of MfFcnA to accommodate different substrates, leading to structurally diverse oligofucan products that potentially could be screened for bioactivities.


Asunto(s)
Phaeophyceae , Sulfatos , Oligosacáridos/química , Polisacáridos/química
7.
Anal Chem ; 94(4): 2279-2287, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35049286

RESUMEN

Carbohydrates, in particular microbial glycans, are highly structurally diverse biomolecules, the recognition of which governs numerous biological processes. Of special interest, glycans of known monosaccharide composition feature multiple possible isomers, differentiated by the anomerism and position of their glycosidic linkages. Robust analytical tools able to circumvent this extreme structural complexity are increasing in demand to ensure not only the correct determination of naturally occurring glycans but also to support the rapid development of enzymatic and chemoenzymatic glycan synthesis. In support to the later, we report the use of complementary strategies based on mass spectrometry (MS) to evaluate the ability of 14 engineered mutants of sucrose-utilizing α-transglucosylases to produce type/group-specific Shigella flexneri pentasaccharide bricks from a single lightly protected non-natural tetrasaccharide acceptor substrate. A first analysis of the reaction media by UHPLC coupled to high-accuracy MS led to detect six reaction products of enzymatic glucosylation out of the eight possible ones. A seventh structure was evidenced by an additional step of ion mobility at a resolving power (Rp) of approximately 100. Finally, a Rp of about 250 in ion mobility made it possible to detect the eighth and last of the expected structures. Complementary to these measurements, tandem MS with high activation energy charge transfer dissociation (CTD) allowed us to unambiguously characterize seven regioisomers out of the eight possible products of enzymatic glucosylation. This work illustrates the potential of the recently described powerful IMS and CTD-MS methods for the precise structural characterization of complex glycans.


Asunto(s)
Polisacáridos , Espectrometría de Masas en Tándem , Carbohidratos , Isomerismo , Oligosacáridos/química , Polisacáridos/química
8.
Anal Chem ; 94(22): 7981-7989, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35604400

RESUMEN

Multispecific antibodies, which target multiple antigens at once, are emerging as promising therapeutic entities to offer more effective treatment than conventional monoclonal antibodies (mAbs). However, these highly complex mAb formats pose significant analytical challenges. We report here on the characterization of a trispecific antibody (tsAb), which presents two isomeric forms clearly separated and identified with size exclusion chromatography coupled to native mass spectrometry (SEC-nMS). Previous studies showed that these isomers might originate from a proline cis/trans isomerization in one Fab subunit of the tsAb. We combined several innovative ion mobility (IM)-based approaches to confirm the isomeric nature of the two species and to gain new insights into the conformational landscape of both isomers. Preliminary SEC-nIM-MS measurements performed on a low IM resolution instrument provided the first hints of the coexistence of different conformers, while complementary collision-induced unfolding (CIU) experiments evidenced distinct gas-phase unfolding behaviors upon activation for the two isomers. As subtle conformational differences remained poorly resolved on our early generation IM platform, we performed high-resolution cyclic IM (cIM-MS) to unambiguously conclude on the coexistence of two conformers. The cis/trans equilibrium was further tackled by exploiting the IMn slicing capabilities of the cIM-MS instrument. Altogether, our results clearly illustrate the benefits of combining state-of-the-art nMS and IM-MS approaches to address challenging issues encountered in biopharma. As engineered antibody constructs become increasingly sophisticated, CIU and cIM-MS methodologies undoubtedly have the potential to integrate the drug development analytical toolbox to achieve in-depth conformational characterization of these products.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Anticuerpos Monoclonales/química , Cromatografía en Gel , Espectrometría de Masas/métodos
9.
Bioinformatics ; 37(22): 4261-4262, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34050747

RESUMEN

SUMMARY: Oligator is software designed to assist scientists in their exploration of MS/MS experiments, especially for oligosaccharides bearing unreferenced chemical substitutions. Through a graphical interface, users have the total flexibility to build a candidate glycan structure and produce the corresponding theoretical MS/MS spectrum in accordance with the usual ion nomenclature. The structural information is saved using standard notations, in text format, which facilitates the capitalization and exchange of data as well as any other processing of the information. AVAILABILITY AND IMPLEMENTATION: Source code and user manual are freely available at https://github.com/vlollier/oligator. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Oligosacáridos , Polisacáridos
10.
Anal Bioanal Chem ; 414(1): 303-318, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34050776

RESUMEN

Ultra-high-performance liquid chromatography (UHPLC) with charge transfer dissociation mass spectrometry (CTD-MS) is presented for the analysis of a mixture of complex sulfated oligosaccharides. The mixture contained kappa (κ), iota (ι), and lambda (λ) carrageenans that contain anhydro bridges, different degrees of sulfation ranging from one to three per dimer, different positioning of the sulfate groups along the backbone, and varying degrees of polymerization (DP) between 4 and 12. Optimization studies using standard mixtures of carrageenans helped establish the optimal conditions for online UHPLC-CTD-MS/MS analysis. Optimization included (1) UHPLC conditions; (2) ion source conditions, such as the capillary voltage, drying gas and nebulizing gas temperature, and flow rate; and (3) CTD-MS conditions, including data-dependent CTD-MS. The UHPLC-CTD results were contrasted with UHPLC-CID results of the same mixture on the same instrument. Whereas CID tends to produce B/Y and C/Z ions with many neutral losses, CTD produced more abundant A/X ions and less abundant neutral losses, which enabled more confident structural detail. The results demonstrate that He-CTD is compatible with the timescale of UHPLC and provides more structural information about carrageenans compared to state-of-the-art methods like UHPLC-CID analysis.


Asunto(s)
Carragenina/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Oligosacáridos/química , Rhodophyta/química , Conformación de Carbohidratos
11.
BMC Bioinformatics ; 22(1): 56, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557761

RESUMEN

BACKGROUND: Mass spectrometry imaging (MSI) is a family of acquisition techniques producing images of the distribution of molecules in a sample, without any prior tagging of the molecules. This makes it a very interesting technique for exploratory research. However, the images are difficult to analyze because the enclosed data has high dimensionality, and their content does not necessarily reflect the shape of the object of interest. Conversely, magnetic resonance imaging (MRI) scans reflect the anatomy of the tissue. MRI also provides complementary information to MSI, such as the content and distribution of water. RESULTS: We propose a new workflow to merge the information from 2D MALDI-MSI and MRI images. Our workflow can be applied to large MSI datasets in a limited amount of time. Moreover, the workflow is fully automated and based on deterministic methods which ensures the reproducibility of the results. Our methods were evaluated and compared with state-of-the-art methods. Results show that the images are combined precisely and in a time-efficient manner. CONCLUSION: Our workflow reveals molecules which co-localize with water in biological images. It can be applied on any MSI and MRI datasets which satisfy a few conditions: same regions of the shape enclosed in the images and similar intensity distributions.


Asunto(s)
Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Flujo de Trabajo
12.
Glycobiology ; 31(4): 352-357, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32651947

RESUMEN

Fucoidans are a diverse class of sulfated polysaccharides integral to the cell wall of brown algae, and due to their various bioactivities, they are potential drugs. Standardized work with fucoidans is required for structure-function studies, but remains challenging since available fucoidan preparations are often contaminated with other algal compounds. Additionally, fucoidans are structurally diverse depending on species and season, urging the need for standardized purification protocols. Here, we use ion-exchange chromatography to purify different fucoidans and found a high structural diversity between fucoidans. Ion-exchange chromatography efficiently removes the polysaccharides alginate and laminarin and other contaminants such as proteins and phlorotannins across a broad range of fucoidans from major brown algal orders including Ectocarpales, Laminariales and Fucales. By monomer composition, linkage analysis and NMR characterization, we identified galacturonic acid, glucuronic acid and O-acetylation as new structural features of certain fucoidans and provided a novel structure of fucoidan from Durvillaea potatorum with α-1,3-linked fucose backbone and ß-1,6 and ß-1,3 galactose branches. This study emphasizes the use of standardized ion-exchange chromatography to obtain defined fucoidans for subsequent molecular studies.


Asunto(s)
Phaeophyceae , Sulfatos , Fucosa , Polisacáridos/química , Sulfatos/química
13.
Anal Chem ; 93(31): 10871-10878, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324299

RESUMEN

Data organization through molecular networks has been used in metabolomics over the past years as a way to efficiently mine the massive amount of structural information produced by tandem mass spectrometry (MS). However, glycomics lags a step behind: carbohydrate structures involve numerous levels of isomerism, making MS and tandem MS blind to many key structural features of glycans. This roadblock can in part be alleviated with gas-phase ion mobility spectrometry (IMS), a method highly sensitive to isomerism. In this work, we propose a novel strategy for structural glycomics: molecular networking of high-resolution IMS/IMS spectra. We combine the cutting-edge strategies of tandem IMS and molecular networking of spectral data. We demonstrate that-when it comes to oligosaccharides and their numerous levels of isomerisms-molecular networks based on IMS/IMS spectra are widely superior to MS/MS-based networks to sort and organize molecules with a high degree of structural relevance.


Asunto(s)
Glicómica , Espectrometría de Masas en Tándem , Espectrometría de Movilidad Iónica , Isomerismo , Oligosacáridos , Polisacáridos
14.
Anal Chem ; 93(5): 2838-2847, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33497195

RESUMEN

Pectins are natural polysaccharides made from galacturonic acid residues, and they are widely used as an excipient in food and pharmaceutical industries. The degree of methyl-esterification, the monomeric composition, and the linkage pattern are all important factors that influence the physical and chemical properties of pectins, such as the solubility. This work focuses on the successful online coupling of charge transfer dissociation-mass spectrometry (CTD-MS) with ultrahigh-performance liquid chromatography (UHPLC) to differentiate isomers of oligogalacturonans derived from citrus pectins. This work employed CTD fragmentation of the pectin mixtures in data-dependent acquisition mode. Compared to the UHPLC with collision-induced dissociation mass spectrometry (UHPLC-CID-MS), UHPLC-CTD-MS yielded fewer ambiguous ions and more structurally informative results. The developed UHPLC-CTD-MS method resulted in abundant cross-ring cleavages-and especially 1,4Xn, 1,5Xn, and 2,4Xn ions-which helped to identify most of the isomers. The Gal A isomers differed only in the methyl group position along the galacturonic acid backbone. The combination of CTD in real time with UHPLC provides a new tool for the structural characterization of complex mixtures of oligogalacturonans and potentially other classes of oligosaccharides.


Asunto(s)
Oligosacáridos , Polisacáridos , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Isomerismo , Espectrometría de Masas
15.
Anal Chem ; 93(15): 6254-6261, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33829764

RESUMEN

Carbohydrates are complex structures that still challenge analysts today because of their different levels of isomerism, notably the anomerism of the glycosidic bond. It has been shown recently that anomerism is preserved upon gas-phase fragmentation and that high-resolution ion mobility (IMS) can distinguish anomers. However, these concepts have yet to be applied to complex biological products. We have used high-resolution IMS on a cyclic device to characterize the reaction products of Uhgb_MS, a novel mannoside synthase of the GH130 family. We designed a so-called IMSn sequence consisting of (i) separating and isolating specific IMS peaks, (ii) ejecting ions to a pre-array store cell depending on their arrival time, (iii) inducing collisional activation upon reinjection, and (iv) performing multistage IMS analysis of the fragments. First, we applied IMS2 sequences to purely linked α1,2- and ß1,2-mannooligosaccharides, which provided us with reference drift times for fragments of known conformation. Then, we performed IMSn analyses of enzymatically produced mannosides and, by comparison with the references, we succeeded in determining the intrachain anomerism of a α1,2-mannotriose and a mix-linked ß/α1,2-mannotetraose-a first for a crude biological medium. Our results show that the anomerism of glycosides is maintained through multiple stages of collisional fragmentation, and that standalone high-resolution IMS and IMSn can be used to characterize the intrachain anomerism in tri- and tetrasaccharides in a biological medium. This is also the first evidence that a single carbohydrate-active enzyme can synthesize both α- and ß-glycosidic linkages.


Asunto(s)
Glicósidos , Manósidos , Iones , Isomerismo , Espectrometría de Masas
16.
J Org Chem ; 86(9): 6390-6405, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33877829

RESUMEN

Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase. On the basis of the scope of mass spectrometry, two analytical techniques to register those signatures were considered, i.e., the ion mobility (IM) and the infrared multiple photon dissociation (IRMPD), in order to build up cross-linked databases. d-Galactose occurs in natural products in both tautomeric forms and presents all possible regioisomers when linked to d-mannose. Consequently, the four reducing Galf-Manp disaccharides as well as the four Galp-Manp counterparts were first synthesized according to a highly convergent approach, and IM-MS and IRMPD-MS data were second collected. Both techniques used afforded signatures, specific to the nature of the connectivity between the two glycosyl entities.


Asunto(s)
Disacáridos , Galactosa , Glicósidos , Manosa , Espectrometría de Masas
17.
J Biol Chem ; 294(17): 6923-6939, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846563

RESUMEN

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and ß-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (ß-agarases and ß-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family ß-agarases and ß-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical ß-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from ß-porphyranases and classical ß-agarases.


Asunto(s)
Agar/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Flavobacteriaceae/enzimología , Hidrolasas/aislamiento & purificación , Secuencia de Aminoácidos , Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/metabolismo , Filogenia , Conformación Proteica , Agua de Mar/microbiología
18.
Anal Chem ; 92(7): 5013-5022, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32167758

RESUMEN

Collision cross section (CCS) databases based on single-laboratory measurements must be cross-validated to extend their use in peak annotation. This work addresses the validation of the first comprehensive TWCCSN2 database for steroids. First, its long-term robustness was evaluated (i.e., a year and a half after database generation; Synapt G2-S instrument; bias within ±1.0% for 157 ions, 95.7% of the total ions). It was further cross-validated by three external laboratories, including two different TWIMS platforms (i.e., Synapt G2-Si and two Vion IMS QToF; bias within the threshold of ±2.0% for 98.8, 79.9, and 94.0% of the total ions detected by each instrument, respectively). Finally, a cross-laboratory TWCCSN2 database was built for 87 steroids (142 ions). The cross-laboratory database consists of average TWCCSN2 values obtained by the four TWIMS instruments in triplicate measurements. In general, lower deviations were observed between TWCCSN2 measurements and reference values when the cross-laboratory database was applied as a reference instead of the single-laboratory database. Relative standard deviations below 1.5% were observed for interlaboratory measurements (<1.0% for 85.2% of ions) and bias between average values and TWCCSN2 measurements was within the range of ±1.5% for 96.8% of all cases. In the context of this interlaboratory study, this threshold was also suitable for TWCCSN2 measurements of steroid metabolites in calf urine. Greater deviations were observed for steroid sulfates in complex urine samples of adult bovines, showing a slight matrix effect. The implementation of a scoring system for the application of the CCS descriptor in peak annotation is also discussed.


Asunto(s)
Esteroides/orina , Animales , Bovinos , Bases de Datos Factuales , Espectrometría de Movilidad Iónica , Esteroides/metabolismo
19.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377002

RESUMEN

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Asunto(s)
Basidiomycota/enzimología , Biomasa , Oxigenasas de Función Mixta/química , Polisacáridos/química , Madera/microbiología , Biodegradación Ambiental , Biotecnología/economía , Biotecnología/métodos , Celulosa/química , Biología Computacional , Análisis Costo-Beneficio , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Genómica , Glicosilación , Oxígeno/química , Filogenia , Especificidad por Sustrato , Transcriptoma , Xilanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA