Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lung ; 202(5): 637-647, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39020115

RESUMEN

PURPOSE: Air trapping, often attested in humans by elevated residual volume (RV) and ratio of RV on total lung capacity (RV/TLC), is frequently observed in asthma. Confirming these alterations in experimental asthma would be important for translational purposes. Herein, lung volumes were investigated in a mouse model of pulmonary allergic inflammation. METHODS: Eight- to 10-week-old male C57BL/6 and BALB/c mice were exposed once daily to intranasal house dust mite (HDM) for 10 consecutive days. All readouts were measured 24 h after the last exposure. Lung volumes were assessed with the flexiVent using a new automated method consisting of degassing the lungs followed by a full-range pressure-volume maneuver. The weight and the volume of the lungs were also measured ex vivo and a lobe was further processed for histological analyses. RESULTS: HDM exposure led to tissue infiltration with inflammatory cells, goblet cell hyperplasia, thickening of the airway epithelium, and elevated ex vivo lung weight and volume. It also decreased TLC and vital capacity but without affecting RV and RV/TLC. These observations were similar between the two mouse strains. CONCLUSION: Alterations of lung volumes in a murine model of pulmonary allergic inflammation are inconsistent with observations made in human asthma. These discrepancies reflect the different means whereby lung volumes are measured between species. The invasive method used herein enables RV to be measured more precisely and without the confounding effect of air trapping, suggesting that changes in RV and RV/TLC using this method in mice should be interpreted differently than in humans.


Asunto(s)
Modelos Animales de Enfermedad , Mediciones del Volumen Pulmonar , Pulmón , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pyroglyphidae , Animales , Masculino , Pulmón/patología , Pulmón/inmunología , Pulmón/fisiopatología , Pyroglyphidae/inmunología , Capacidad Pulmonar Total , Ratones , Asma/inmunología , Asma/patología , Asma/fisiopatología , Células Caliciformes/patología , Capacidad Vital , Hiperplasia , Neumonía/patología , Neumonía/inmunología , Neumonía/fisiopatología , Tamaño de los Órganos , Volumen Residual
2.
Exp Physiol ; 108(8): 1080-1091, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37341687

RESUMEN

NEW FINDINGS: What is the central question of this study? The lung response to inhaled methacholine is reputed to be greater in male than in female mice. The underpinnings of this sex disparity are ill defined. What is the main finding and its importance? We demonstrated that male airways exhibit a greater content of airway smooth muscle than female airways. We also found that, although a more muscular airway tree in males might contribute to their greater responsiveness to inhaled methacholine than females, it might also curb the heterogeneity in small airway narrowing. ABSTRACT: Mouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty-four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine-induced bronchoconstriction). However, for a well-matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.


Asunto(s)
Asma , Masculino , Femenino , Animales , Ratones , Cloruro de Metacolina/farmacología , Asma/patología , Pulmón , Broncoconstricción , Músculo Liso/fisiología
3.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L107-L120, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670484

RESUMEN

Despite decades of research, studies investigating the physiological alterations caused by an acute bout of inflammation induced by exposing the lung to lipopolysaccharide have yielded inconsistent results. This can be attributed to small effects and/or a lack of fitted physiological testing. Herein, a comprehensive investigation of lung mechanics was conducted on 270 male C57BL/6 mice at 24, 48, or 96 h after an intranasal exposure to saline or lipopolysaccharide at either 1 or 3 mg/kg (30 mice per group). Traditional techniques that probe the lung using small-amplitude perturbations (i.e., oscillometry) were used, together with less conventional and new techniques that probe the lung using maneuvers of large amplitudes. The latter include a partial and a full-range pressure-volume maneuvers to measure quasi-static elastance, compliance, total lung volume, vital capacity, and residual volume. The results demonstrate that lung mechanics assessed by oscillometry was only slightly affected by lipopolysaccharide, confirming previous findings. In contradistinction, lipopolysaccharide markedly altered mechanics when the lung was probed with maneuvers of large amplitudes. With the dose of 3 mg/kg at the peak of inflammation (48 h postexposure), lipopolysaccharide increased quasi-static elastance by 26.7% (P < 0.0001) and decreased compliance by 34.5% (P < 0.0001). It also decreased lung volumes, including total lung capacity, vital capacity, and residual volume by 33.3%, 30.5%, and 43.3%, respectively (all P < 0.0001). These newly reported physiological alterations represent sensitive outcomes to efficiently evaluate countermeasures (e.g., drugs) in the context of several lung diseases.


Asunto(s)
Lipopolisacáridos , Respiración con Presión Positiva , Animales , Inflamación , Lipopolisacáridos/farmacología , Pulmón/fisiología , Rendimiento Pulmonar , Masculino , Ratones , Ratones Endogámicos C57BL , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología
4.
Respir Physiol Neurobiol ; 325: 104264, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38599345

RESUMEN

Eight pig tracheal strips were stimulated to contract with log increments of methacholine from 10-8 to 10-5 M. For each strip, the concentration-response was repeated four times in a randomized order to measure isometric force, isotonic shortening against a load corresponding to either 5 or 10 % of a reference force, and average force, stiffness, elastance and resistance over one cycle while the strip length was oscillating sinusoidally by 5 % at 0.2 Hz. For each readout, the logEC50 was calculated and compared. Isotonic shortening with a 5 % load had the lowest logEC50 (-7.13), yielding a greater sensitivity than any other contractile readout (p<0.05). It was followed by isotonic shortening with a 10 % load (-6.66), elastance (-6.46), stiffness (-6.46), resistance (-6.38), isometric force (-6.32), and average force (-6.30). Some of these differences were significant. For example, the EC50 with the average force was 44 % greater than with the elastance (p=0.001). The methacholine sensitivity is thus affected by the contractile readout being measured.


Asunto(s)
Broncoconstrictores , Cloruro de Metacolina , Músculo Liso , Tráquea , Animales , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Cloruro de Metacolina/farmacología , Porcinos , Tráquea/fisiología , Tráquea/efectos de los fármacos , Broncoconstrictores/farmacología , Contracción Muscular/fisiología , Contracción Muscular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Elasticidad/fisiología , Contracción Isométrica/fisiología , Contracción Isométrica/efectos de los fármacos
5.
Sci Rep ; 14(1): 20133, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210022

RESUMEN

The level of airway constriction in thin slices of lung tissue is highly variable. Owing to the labor-intensive nature of these experiments, determining the number of airways to be analyzed in order to allocate a reliable value of constriction in one mouse is challenging. Herein, a new automated device for physiology and image analysis was used to facilitate high throughput screening of airway constriction in lung slices. Airway constriction was first quantified in slices of lungs from male BALB/c mice with and without experimental asthma that were inflated with agarose through the trachea or trans-parenchymal injections. Random sampling simulations were then conducted to determine the number of airways required per mouse to quantify maximal constriction. The constriction of 45 ± 12 airways per mouse in 32 mice were analyzed. Mean maximal constriction was 37.4 ± 32.0%. The agarose inflating technique did not affect the methacholine response. However, the methacholine constriction was affected by experimental asthma (p = 0.003), shifting the methacholine concentration-response curve to the right, indicating a decreased sensitivity. Simulations then predicted that approximately 35, 16 and 29 airways per mouse are needed to quantify the maximal constriction mean, standard deviation and coefficient of variation, respectively; these numbers varying between mice and with experimental asthma.


Asunto(s)
Asma , Pulmón , Cloruro de Metacolina , Ratones Endogámicos BALB C , Animales , Pulmón/fisiopatología , Ratones , Masculino , Cloruro de Metacolina/farmacología , Asma/fisiopatología , Ensayos Analíticos de Alto Rendimiento/métodos , Modelos Animales de Enfermedad
6.
Sci Rep ; 13(1): 17481, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838793

RESUMEN

This study was undertaken to determine whether a smaller lung volume or a stiffer lung tissue accounts for the greater lung elastance of C57BL/6 than BALB/c mice. The mechanical properties of the respiratory system and lung volumes were measured with the flexiVent and compared between male C57BL/6 and BALB/c mice (n = 9). The size of the excised lung was also measured by volume liquid displacement. One lobe was then subjected to sinusoidal strains in vitro to directly assess the mechanical properties of the lung tissue, and another one was used to quantify the content of hydroxyproline. In vivo elastance was markedly greater in C57BL/6 than BALB/c mice based on 5 different readouts. For example, respiratory system elastance was 24.5 ± 1.7 vs. 21.5 ± 2.4 cmH2O/mL in C57BL/6 and BALB/c mice, respectively (p = 0.007). This was not due to a different lung volume measured by displaced liquid volume. On the isolated lobes, both elastance and the hydroxyproline content were significantly greater in C57BL/6 than BALB/c mice. These results suggest that the lung elastance of C57BL/6 mice is greater than BALB/c mice not because of a smaller lung volume but because of a stiffer lung tissue due to a greater content of collagen.


Asunto(s)
Pulmón , Ratones , Animales , Masculino , Ratones Endogámicos BALB C , Hidroxiprolina , Ratones Endogámicos C57BL , Rendimiento Pulmonar
7.
Respir Physiol Neurobiol ; 304: 103938, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35716869

RESUMEN

BALB/c mice from both sexes underwent one of two nebulized methacholine challenges that were preceded by a period of 20 min either with or without tone induced by repeated contractions of the airway smooth muscle. Impedance was monitored throughout and the constant phase model was used to dissociate the impact of tone on conducting airways (RN - Newtonian resistance) versus the lung periphery (G and H - tissue resistance and elastance). The effect of tone on smooth muscle contractility was also tested on excised tracheas. While tone markedly potentiated the methacholine-induced gains in H and G in both sexes, the gain in RN was only potentiated in males. The contractility of female and male tracheas was also potentiated by tone. Inversely, the methacholine-induced gain in hysteresivity (G/H) was mitigated by tone in both sexes. Therefore, the tone-induced muscle hypercontractility impacts predominantly the lung periphery in vivo, but also promotes further airway narrowing in males while protecting against narrowing heterogeneity in both sexes.


Asunto(s)
Pulmón , Músculo Liso , Animales , Femenino , Masculino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Contracción Muscular/fisiología , Tráquea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA