Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 229(2): 567-575, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943633

RESUMEN

BACKGROUND: Human immunity triggered by natural malaria infections impedes parasite transmission from humans to mosquitoes, leading to interest in transmission-blocking vaccines. However, immunity characteristics, especially strain specificity, remain largely unexplored. We investigated naturally acquired transmission-blocking immunity (TBI) against Plasmodium vivax, a major malaria parasite. METHODS: Using the direct membrane-feeding assay, we assessed TBI in plasma samples and examined the role of antibodies by removing immunoglobulins through protein G/L adsorption before mosquito feeding. Strain specificity was evaluated by conducting a direct membrane-feeding assay with plasma exchange. RESULTS: Blood samples from 47 patients with P vivax were evaluated, with 37 plasma samples successfully infecting mosquitoes. Among these, 26 showed inhibition before immunoglobulin depletion. Despite substantial immunoglobulin removal, 4 samples still exhibited notable inhibition, while 22 had reduced blocking activity. Testing against heterologous strains revealed some plasma samples with broad TBI and others with strain-specific TBI. CONCLUSIONS: Our findings indicate that naturally acquired TBI is mainly mediated by antibodies, with possible contributions from other serum factors. The transmission-blocking activity of plasma samples varied by the tested parasite strain, suggesting single polymorphic or multiple targets for naturally acquired TBI. These observations improve understanding of immunity against P vivax and hold implications for transmission-blocking vaccine development.


Asunto(s)
Anopheles , Malaria Vivax , Malaria , Animales , Humanos , Plasmodium vivax , Tailandia/epidemiología , Malaria Vivax/parasitología , Inmunidad Adaptativa , Anopheles/parasitología , Anticuerpos Antiprotozoarios , Antígenos de Protozoos
2.
Mol Cell Proteomics ; 21(10): 100406, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030044

RESUMEN

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Parásitos , Humanos , Ratones , Animales , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Plasmodium vivax , Proteómica , Proteoma , Filaminas , Hígado , Biomarcadores , Espectrometría de Masas
3.
Malar J ; 22(1): 17, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36635642

RESUMEN

BACKGROUND: Mass drug administration (MDA) with primaquine (PQ) is being considered for accelerating Plasmodium vivax elimination in remaining active foci. This study aimed to determine the acceptability of MDA with PQ in malaria endemic villages in a malarious setting in the South of Thailand undergoing MDA with PQ. METHODS: A cross-sectional mixed-methods approach was conducted in seven malaria endemic villages where MDA with PQ was implemented. The data were collected from community villagers and health workers using structured questionnaires, in-depth interviews, and focus group discussions. Descriptive statistics and logistic regression models were used for quantitative data analysis. Thematic analysis was applied for qualitative data. RESULTS: Among a total of 469 participants from the MDA villages, 293 participants were eligible for MDA with PQ and 79.86% (234) completed 14-days of PQ. The logistic regressions indicated that males (adjusted odds ratio: 2.52 [95% confidence interval: 1.33-4.81]) and those who are farmers (2.57 [1.12-5.90]) were most likely to participate in the MDA. Among 293 participants in the post-MDA study, 74.06% had originally agreed to participate in the MDA with PQ while 25.94% had originally reported not wanting to participate in the MDA. Of those who originally reported being willing to participate in the MDA, 71.23% followed through with participation in the first or second round. Conversely, 93.24% of those who originally reported not being willing to participate in the MDA did in fact participate in the MDA. Factors contributing to higher odds of agreeing to participate and following through with participation included being male (1.98 [1.06-3.69]) and correctly responding that malaria is preventable (2.32 [1.01-5.35]) with some differences by village. Five key themes emerged from the qualitative analyses: concern about side effects from taking PQ; disbelief that malaria could be eliminated in this setting; low overall concern about malaria infections; misunderstandings about malaria; and a general need to tailor public health efforts for this unique context. CONCLUSION: While the reported likelihood of participating in MDA was high in this setting, actual follow-through was relatively moderate, partially because of eligibility (roughly 71% of those in the follow-up survey who originally agreed to participate actually followed through with participation). One of the largest concerns among study participants was PQ-related side effects-and these concerns likely heavily influenced participant adherence to the MDA. The results of this study can be used to tailor future MDAs, or other public health interventions, in this and potentially other similar settings.


Asunto(s)
Antimaláricos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Malaria Vivax , Malaria , Humanos , Masculino , Femenino , Primaquina/uso terapéutico , Primaquina/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/farmacología , Plasmodium vivax , Administración Masiva de Medicamentos , Tailandia , Estudios Transversales , Malaria/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control
4.
Malar J ; 22(1): 143, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127600

RESUMEN

BACKGROUND: Over the past decade, the incidence of malaria has steadily declined in Myanmar, with Plasmodium vivax becoming predominant. The resilience of P. vivax to malaria control is attributed to the parasite's ability to form hypnozoites in the host's liver, which can cause relapse. Primaquine is used to eliminate hypnozoites but can cause haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. It is thus necessary to estimate the frequency and variant types of G6PD deficiency in areas where primaquine will be widely used for P. vivax elimination. METHODS: In this study, a descriptive cross-sectional survey was conducted to determine the prevalence of G6PD deficiency in a population residing in Nay Pyi Taw, Myanmar, using a standard spectrophotometric assay, a rapid diagnostic test (RDT), Biosensor, and by genotyping G6PD variants. RESULTS: G6PD enzyme activity was determined from 772 leukocyte-depleted samples, with an adjusted male median G6PD activity value of 6.3 U/g haemoglobin. Using a cut-off value of 30% enzyme activity, the overall prevalence of G6PD deficiency was 10.8%. Genotyping of G6PD variants was performed for 536 samples, of which 131 contained mutations. The Mahidol variant comprised the majority, and males with the Mahidol variant showed lower G6PD enzyme activity. The G6PD Andalus variant, which has not been reported in Myanmar before, was also identified in this study. CONCLUSION: This study provides a G6PD enzyme activity reference value for the Myanmar population and further information on the prevalence and variants of G6PD deficiency among the Myanmar population; it also evaluates the feasibility of G6PD deficiency tests.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Malaria Vivax , Malaria , Masculino , Humanos , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Glucosafosfato Deshidrogenasa/genética , Primaquina , Prevalencia , Estudios Transversales , Mianmar , Genotipo , Malaria/epidemiología , Malaria Vivax/genética , Factores de Riesgo , Pruebas en el Punto de Atención
5.
Malar J ; 22(1): 22, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658583

RESUMEN

BACKGROUND: Plasmodium vivax is responsible for much of malaria outside Africa. Although most P. vivax infections in endemic areas are asymptomatic and have low parasite densities, they are considered a potentially important source of transmission. Several studies have demonstrated that asymptomatic P. vivax carriers can transmit the parasite to mosquitoes, but the efficiency has not been well quantified. The aim of this study is to determine the relationship between parasite density and mosquito infectivity, particularly at low parasitaemia. METHODS: Membrane feeding assays were performed using serial dilutions of P. vivax-infected blood to define the relationship between parasitaemia and mosquito infectivity. RESULTS: The infection rate (oocyst prevalence) and intensity (oocyst load) were positively correlated with the parasite density in the blood. There was a broad case-to-case variation in parasite infectivity. The geometric mean parasite density yielding a 10% mosquito infection rate was 33 (CI 95 9-120) parasites/µl or 4 (CI 95 1-17) gametocytes/µl. The geometric mean parasite density yielding a 50% mosquito infection rate was 146 (CI 95 36-586) parasites/µl or 13 (CI 95 3-49) gametocytes/µl. CONCLUSION: This study quantified the ability of P. vivax to infect Anopheles dirus at over a broad range of parasite densities. It provides important information about parasite infectivity at low parasitaemia common among asymptomatic P. vivax carriers.


Asunto(s)
Anopheles , Malaria Vivax , Malaria , Animales , Plasmodium vivax , Malaria Vivax/parasitología , Oocistos , Anopheles/parasitología , Parasitemia/parasitología , Plasmodium falciparum
6.
Org Biomol Chem ; 21(9): 1967-1979, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762533

RESUMEN

T-shaped spermine-based cationic lipids with identical and nonidentical hydrophobic tails having variable carbon lengths (from C10 to C18) were designed and synthesized. These lipids were characterized, and their structure-activity relationships were determined for DNA binding and transfection ability of these compounds when formulated as cationic liposomes. These liposomes were then applied as non-viral vectors to transfect HEK293T, HeLa, PC3, H460, HepG2, and Calu'3 cell lines with plasmid DNA encoding the green fluorescent protein. ST9, ST12 and ST13 with nonidentical tails could deliver DNA into HEK293T cells up to 60% under serum-free conditions. The lipid ST15 bearing nonidentical tails was found to be a potent gene transfer agent under 40% serum conditions in HEK293T and HeLa cells. Besides their low cytotoxicity, these lipoplexes also exhibited greater transfection efficiency than the commercially available transfection agent, Lipofectamine 3000.


Asunto(s)
Liposomas , Espermina , Humanos , Liposomas/química , Células HeLa , Espermina/química , Células HEK293 , Transfección , Plásmidos , ADN/química , Cationes/química , Lípidos/química
7.
Chembiochem ; 23(6): e202100672, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35001486

RESUMEN

Cationic lipids are widely used as nonviral synthetic vectors for gene delivery as a safer alternative to viral vectors. In this work, a library of L-shaped spermine-based cationic lipids with identical and nonidentical hydrophobic chains having variable carbon lengths (from C10 to C18) was designed and synthesized. These lipids were characterized and the structure-activity relationships of these compounds were determined for DNA binding and transfection ability when formulated as cationic liposomes. The liposomes were then used successfully for the transfection of HEK293T, HeLa, PC3, H460, HepG2, SH-SY5Y and Calu'3 cell lines. The transfection efficiency of lipids with nonidentical hydrocarbon chains was greater than the identical analogue. These reagents exhibited superior efficiency to the commercial reagent, Lipofectamine3000, under both serum-free and 10-40 % serum conditions in HEK293T, HeLa and H460 cell lines. The lipids were not toxic to the tested cell line. The results suggest that L-shaped spermine-based cationic lipids with nonidentical hydrocarbon tails could serve as efficient and safe nonviral vector gene carriers in further in vivo studies.


Asunto(s)
Liposomas , Espermina , Cationes/química , ADN/química , Células HEK293 , Humanos , Hidrocarburos , Lípidos/química , Liposomas/química , Espermina/química , Transfección
8.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32014895

RESUMEN

The interactions between Plasmodium parasites and human erythrocytes are prime targets of blood stage malaria vaccine development. The reticulocyte binding protein 2-P1 (RBP2-P1) of Plasmodium vivax, a member of the reticulocyte binding protein family, has recently been shown to be highly antigenic in several settings endemic for malaria. Yet, its functional characteristics and the relevance of its antibody response in human malaria have not been examined. In this study, the potential function of RBP2-P1 as an invasion ligand of P. vivax was evaluated. The protein was found to be expressed in schizonts, be localized at the apical end of the merozoite, and preferentially bind reticulocytes over normocytes. Human antibodies to this protein also exhibit erythrocyte binding inhibition at physiologically relevant concentrations. Furthermore, RBP2-P1 antibodies are associated with lower parasitemia and tend to be higher in asymptomatic carriers than in patients. This study provides evidence supporting a role of RBP2-P1 as an invasion ligand and its consideration as a vaccine target.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/metabolismo , Malaria Vivax/inmunología , Proteínas de la Membrana/metabolismo , Plasmodium vivax/inmunología , Proteínas Protozoarias/metabolismo , Reticulocitos/metabolismo , Inmunidad Adaptativa , Adolescente , Adulto , Anciano , Antígenos de Protozoos/inmunología , Femenino , Humanos , Inmunoglobulina G/sangre , Malaria Vivax/parasitología , Masculino , Proteínas de la Membrana/inmunología , Persona de Mediana Edad , Unión Proteica , Proteínas Protozoarias/inmunología , Adulto Joven
9.
Malar J ; 18(1): 148, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023359

RESUMEN

BACKGROUND: Long-term in vitro culture of blood stage Plasmodium parasites invariably leads to asynchronous parasite development. The most often used technique to synchronize Plasmodium falciparum culture is sorbitol treatment, which differentially induces osmotic lysis of trophozoite- and schizont-infected red blood cells due to presence of the new permeation pathways in the membranes of these cells. However, sorbitol treatment does not work well when used to synchronize the culture-adapted Plasmodium knowlesi A1-H.1 line. METHODS: A number of common solutes were tested in lieu of sorbitol for synchronization of P. knowlesi A1-H.1 ring stage. RESULTS: Guanidine hydrochloride was found to selectively lyse trophozoite- and schizont-infected red blood cells, yielding highly synchronous and viable rings. CONCLUSIONS: A method for synchronization of P. knowlesi in human red blood cells was developed. Requiring only common laboratory reagents, this method is simple and should be applicable to most laboratory settings.


Asunto(s)
Eritrocitos/efectos de los fármacos , Guanidina/farmacología , Parasitología/métodos , Plasmodium knowlesi/efectos de los fármacos , Plasmodium knowlesi/crecimiento & desarrollo , Eritrocitos/parasitología , Humanos , Malaria/parasitología , Esquizontes/crecimiento & desarrollo , Sorbitol/farmacología
10.
Proc Natl Acad Sci U S A ; 113(2): E191-200, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715754

RESUMEN

Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short ß-hairpin, and, although the structural fold is similar to that of PfRh5--the essential invasion ligand in Plasmodium falciparum--its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection.


Asunto(s)
Secuencia Conservada , Eritrocitos/metabolismo , Plasmodium vivax/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Área Bajo la Curva , Secuencia de Bases , Cristalografía por Rayos X , Evolución Molecular , Frecuencia de los Genes , Genes Protozoarios , Haplotipos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium vivax/genética , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Dispersión del Ángulo Pequeño , Alineación de Secuencia
11.
J Biol Chem ; 292(28): 11960-11969, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28533429

RESUMEN

FREP1 in mosquito midguts facilitates Plasmodium falciparum parasite transmission. The fibrinogen-like (FBG) domain of FREP1 is highly conserved (>90% identical) among Anopheles species from different continents, suggesting that anti-FBG antibodies may block malaria transmission to all anopheline mosquitoes. Using standard membrane-feeding assays, anti-FREP1 polyclonal antibodies significantly blocked transmission of Plasmodium berghei and Plasmodium vivax to Anopheles gambiae and Anopheles dirus, respectively. Furthermore, in vivo studies of mice immunized with FBG achieved >75% blocking efficacy of P. berghei to A. gambiae without triggering immunopathology. Anti-FBG serum also reduced >81% of P. falciparum infection to A. gambiae Finally, we showed that FBG interacts with Plasmodium gametocytes and ookinetes, revealing the molecular mechanism of its antibody transmission-blocking activity. Collectively, our data support that FREP1-mediated Plasmodium transmission to mosquitoes is a conserved pathway and that targeting the FBG domain of FREP1 will limit the transmission of multiple Plasmodium species to multiple Anopheles species.


Asunto(s)
Anopheles/metabolismo , Proteínas de Insectos/uso terapéutico , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Secuencia de Aminoácidos , Animales , Anopheles/inmunología , Anopheles/parasitología , Anticuerpos Bloqueadores/análisis , Secuencia Conservada , Femenino , Células Germinativas/inmunología , Células Germinativas/metabolismo , Humanos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/sangre , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Masculino , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/uso terapéutico , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/inmunología , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Vacunas Sintéticas/química , Vacunas Sintéticas/metabolismo , Vacunas Sintéticas/uso terapéutico
12.
Malar J ; 17(1): 370, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333026

RESUMEN

BACKGROUND: Plasmodium vivax is the most geographically widespread of the human malaria parasites, causing 50,000 to 100,000 deaths annually. Plasmodium vivax parasites have the unique feature of forming dormant liver stages (hypnozoites) that can reactivate weeks or months after a parasite-infected mosquito bite, leading to new symptomatic blood stage infections. Efforts to eliminate P. vivax malaria likely will need to target the persistent hypnozoites in the liver. Therefore, research on P. vivax liver stages necessitates a marker for clearly distinguishing between actively replicating parasites and dormant hypnozoites. Hypnozoites possess a densely fluorescent prominence in the parasitophorous vacuole membrane (PVM) when stained with antibodies against the PVM-resident protein Upregulated in Infectious Sporozoites 4 (PvUIS4), resulting in a key feature recognizable for quantification of hypnozoites. Thus, PvUIS4 staining, in combination with the characteristic small size of the parasite, is currently the only hypnozoite-specific morphological marker available. RESULTS: Here, the generation and validation of a recombinant monoclonal antibody against PvUIS4 (α-rUIS4 mAb) is described. The variable heavy and light chain domains of an α-PvUIS4 hybridoma were cloned into murine IgG1 and IgK expression vectors. These expression plasmids were co-transfected into HEK293 cells and mature IgG was purified from culture supernatants. It is shown that the α-rUIS4 mAb binds to its target with high affinity. It reliably stains the schizont PVM and the hypnozoite-specific PVM prominence, enabling the visual differentiation of hypnozoites from replicating liver stages by immunofluorescence assays in different in vitro settings, as well as in liver sections from P. vivax infected liver-chimeric mice. The antibody functions reliably against all four parasite isolates tested and will be an important tool in the identification of the elusive hypnozoite. CONCLUSIONS: The α-rUIS4 mAb is a versatile tool for distinguishing replicating P. vivax liver stages from dormant hypnozoites, making it a valuable resource that can be deployed throughout laboratories worldwide.


Asunto(s)
Anticuerpos Antiprotozoarios/fisiología , Hígado/parasitología , Plasmodium vivax/aislamiento & purificación , Esporozoítos/inmunología , Biomarcadores/análisis
13.
Infect Immun ; 84(3): 677-85, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712206

RESUMEN

Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion.


Asunto(s)
Malaria Vivax/genética , Malaria Vivax/inmunología , Proteínas de la Membrana/inmunología , Plasmodium vivax/genética , Proteínas Protozoarias/inmunología , Humanos , Malaria Vivax/parasitología , Proteínas de la Membrana/genética , Plasmodium vivax/inmunología , Plasmodium vivax/fisiología , Proteínas Protozoarias/genética , Reticulocitos/inmunología , Reticulocitos/parasitología
14.
Malar J ; 14: 297, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26243280

RESUMEN

BACKGROUND: The study of the biology, transmission and pathogenesis of Plasmodium vivax is hindered due to the lack of a robustly propagating, continuous culture of this parasite. The current culture system for P. vivax parasites still suffered from consistency and difficulties in long-term maintenance of parasites in culture and for providing sufficient biological materials for studying parasite biology. Therefore, further improvement of culture conditions for P. vivax is needed. METHODS: Clinical samples were collected from patients diagnosed with P. vivax in western Thailand. Leukocyte-depleted P. vivax infected blood samples were cultured in a modified McCoy's 5A medium at 5% haematocrit under hypoxic condition (5% O2, 5% CO2, and 90% N2). Reticulocytes purified from adult peripheral blood were added daily to maintain 4% reticulocytes. Parasites were detected by microscopic examination of Giemsa-stained smears and molecular methods. RESULTS: The effects of culture variables were first analysed in order to improve the culture conditions for P. vivax. Through analysis of the sources of host reticulocytes and nutrients of culture medium, the culture conditions better supporting in vitro growth and maturation of the parasites were identified. Using this system, three of 30 isolates could be maintained in vitro for over 26 months albeit parasite density is low. CONCLUSIONS: Based on the analysis of different culture variables, an improved and feasible protocol for continuous culture of P. vivax was developed.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Malaria Vivax/parasitología , Plasmodium vivax , Medios de Cultivo/química , Eritrocitos/parasitología , Humanos , Carga de Parásitos , Plasmodium vivax/citología , Plasmodium vivax/metabolismo , Plasmodium vivax/fisiología , Reticulocitos
15.
Malar J ; 13: 55, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24528780

RESUMEN

BACKGROUND: Plasmodium vivax preferentially infects Duffy-positive reticulocytes and infections typically have few parasite-infected cells in the peripheral circulation. These features complicate detection and quantification by flow cytometry (FC) using standard nucleic acid-based staining methods. A simple antibody-based FC method was developed for rapid parasite detection along with simultaneous detection of other parasite and erythrocyte markers. METHODS: Clinical samples were collected from patients diagnosed with P. vivax at a district Malaria Clinic in Kanchanaburi, Thailand. One µL of infected blood was washed, fixed, stained with a Plasmodium pan-specific anti-PfBiP antibody conjugated with Alexa Fluor 660, and analysed by FC. Additional primary conjugated antibodies for stage-specific markers of P. vivax for late trophozoite-early schizonts (MSP1-Alexa Fluor 660), late-stage schizonts (DBP-Alexa Fluor 555), and sexual stages (Pvs16) were used to differentiate intra-erythrocytic developmental stages. RESULTS: The percentages of P. vivax-infected cells determined by the FC method and manually by microscopic examination of Giemsa-stained thick blood smears were positively correlated by Spearman's rank correlation coefficient (R2=0.93843) from 0.001 to 1.00% P. vivax-infected reticulocytes. CONCLUSIONS: The FC-based method is a simple, robust, and efficient method for detecting P. vivax-infected reticulocytes.


Asunto(s)
Células Sanguíneas/parasitología , Citometría de Flujo/métodos , Malaria Vivax/diagnóstico , Plasmodium vivax/aislamiento & purificación , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/análisis , Colorantes Fluorescentes/análisis , Humanos , Coloración y Etiquetado , Tailandia
16.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38865344

RESUMEN

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Asunto(s)
Vacunas contra la Malaria , Malaria Vivax , Plasmodium berghei , Plasmodium vivax , Proteínas Protozoarias , Animales , Ratones , Plasmodium vivax/genética , Plasmodium vivax/inmunología , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Humanos , Malaria Vivax/transmisión , Malaria Vivax/parasitología , Malaria Vivax/prevención & control , Malaria Vivax/inmunología , Femenino , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Malaria/transmisión , Malaria/prevención & control , Malaria/parasitología , Malaria/inmunología , Ratones Endogámicos BALB C
17.
JMIR Public Health Surveill ; 10: e51993, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922648

RESUMEN

BACKGROUND: A challenge in achieving the malaria-elimination target in the Greater Mekong Subregion, including Thailand, is the predominance of Plasmodium vivax malaria, which has shown extreme resilience to control measures. OBJECTIVE: This proof-of-concept study aimed to provide evidence for implementing primaquine mass drug administration (pMDA) as a strategy for P. vivax elimination in low-endemicity settings. METHODS: The study employed a mixed-methods trial to thoroughly evaluate the effectiveness, safety, acceptability, and community engagement of pMDA. The quantitative part was designed as a 2-period cluster-crossover randomized controlled trial. The intervention was pMDA augmented to the national prevention and control standards with directly observed treatment (DOT) by village health volunteers. The qualitative part employed in-depth interviews and brainstorming discussions. The study involved 7 clusters in 2 districts of 2 southern provinces in Thailand with persistently low P. vivax transmission. In the quantitative part, 5 cross-sectional blood surveys were conducted in both the pMDA and control groups before and 3 months after pMDA. The effectiveness of pMDA was determined by comparing the proportions of P. vivax infections per 1000 population between the 2 groups, with a multilevel zero-inflated negative binomial model adjusted for cluster and time as covariates and the interaction. The safety data comprised adverse events after drug administration. Thematic content analysis was used to assess the acceptability and engagement of stakeholders. RESULTS: In the pre-pMDA period, the proportions of P. vivax infections in the pMDA (n=1536) and control (n=1577) groups were 13.0 (95% CI 8.2-20.4) and 12.0 (95% CI 7.5-19.1), respectively. At month 3 post-pMDA, these proportions in the pMDA (n=1430) and control (n=1420) groups were 8.4 (95% CI 4.6-15.1) and 5.6 (95% CI 2.6-11.5), respectively. No statistically significant differences were found between the groups. The number of malaria cases reduced in all clusters in both groups, and thus, the impact of pMDA was inconclusive. There were no major safety concerns. Acceptance among the study participants and public health care providers at local and national levels was high, and they believed that pMDA had boosted awareness in the community. CONCLUSIONS: pMDA was associated with high adherence, safety, and tolerability, but it may not significantly impact P. vivax transmission. As this was a proof-of-concept study, we decided not to scale up the intervention with larger clusters and samples. An alternative approach involving a targeted primaquine treatment strategy with primaquine and DOT is currently being implemented. We experienced success regarding effective health care workforces at point-of-care centers, effective collaborations in the community, and commitment from authorities at local and national levels. Our efforts boosted the acceptability of the malaria-elimination initiative. Community engagement is recommended to achieve elimination targets. TRIAL REGISTRATION: Thai Clinical Trials Registry TCTR20190806004; https://www.thaiclinicaltrials.org/show/TCTR20190806004.


Asunto(s)
Antimaláricos , Malaria Vivax , Administración Masiva de Medicamentos , Primaquina , Humanos , Primaquina/uso terapéutico , Primaquina/administración & dosificación , Tailandia/epidemiología , Administración Masiva de Medicamentos/métodos , Administración Masiva de Medicamentos/estadística & datos numéricos , Masculino , Femenino , Adulto , Adolescente , Malaria Vivax/tratamiento farmacológico , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Persona de Mediana Edad , Adulto Joven , Prueba de Estudio Conceptual , Niño , Estudios Cruzados , Estudios Transversales , Aceptación de la Atención de Salud/estadística & datos numéricos , Aceptación de la Atención de Salud/psicología
18.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38367843

RESUMEN

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Asunto(s)
Antimaláricos , Apicoplastos , Azitromicina , Hígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacología , Plasmodium vivax/efectos de los fármacos , Plasmodium cynomolgi/efectos de los fármacos , Antimaláricos/farmacología , Hígado/parasitología , Hígado/efectos de los fármacos , Apicoplastos/efectos de los fármacos , Animales , Hepatocitos/parasitología , Hepatocitos/efectos de los fármacos , Humanos , Biogénesis de Organelos , Malaria Vivax/parasitología , Malaria Vivax/tratamiento farmacológico , Ratones , Malaria/parasitología , Malaria/tratamiento farmacológico
19.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370683

RESUMEN

New therapeutics are a priority for preventing and eliminating Plasmodium vivax (Pv) malaria because of its easy transmissibility and dormant stages in the liver. Relapses due to the dormant liver stages are the major contributor to reoccurring Pv. Therefore, therapies that reduce the establishment of dormant parasites and blood-stage infection are important for controlling this geographically widespread parasite. Here, we isolated 12 human monoclonal antibodies (humAbs) from the plasma of a Pv-exposed individual that recognized Pv apical membrane antigen 1 (PvAMA1). PvAMA1 is important for both sporozoite invasion of hepatocytes and merozoite invasion of reticulocytes. We identified one humAb, 826827, that blocked invasion of human erythrocytes using a transgenic P. falciparum line expressing PvAMA1 (IC 50 = 3 µg/mL) and all Pv clinical isolates in vitro . This humAb also inhibited sporozoite invasion of a human hepatocyte cell line and primary human hepatocytes (IC 50 of 0.3 - 3.7 µg/mL). The crystal structure of recombinant PvAMA1 with the antigen-binding fragment of 826827 at 2.4 Å resolution shows that the humAb partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. HumAb 826827 binds to PvAMA1 with higher affinity than RON2, accounting for its potency. To our knowledge, this is the first reported humAb specific to PvAMA1, and the PvAMA1 residues it binds to are highly conserved across different isolates, explaining its strain-transcendent properties.

20.
ACS Appl Bio Mater ; 6(12): 5324-5332, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38039355

RESUMEN

Early detection could increase the treatment efficiency and prevent the recurrence of malaria disease. To track and detect malarial sporozoites, novel drug delivery systems have been explored for their ability to target these parasites specifically. This study investigates the potential of micelles to track Plasmodium vivax by targeting the Plasmodium vivax hexose transporter using glucose-based interactions. In vitro experiments were conducted using glucose/SPIO/Nile red (targeted) micelles and methoxy/SPIO/Nile red (nontargeted) micelles, revealing that the targeted micelles exhibited stronger fluorescence with the sporozoites and higher relative R2* values compared to the nontargeted micelles. These findings suggest that targeted micelles could be used for the specific detection of Plasmodium sporozoites using fluorescence imaging and MRI techniques, offering a promising approach for efficient malaria parasite detection.


Asunto(s)
Malaria , Micelas , Animales , Esporozoítos , Imagen por Resonancia Magnética/métodos , Glucosa , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA