Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proteomics ; : e2100313, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850190

RESUMEN

Evolutionary relationships among parasites of the subfamily Leishmaniinae, which comprises pathogen agents of leishmaniasis, were inferred based on differential protein expression profiles from mass spectrometry-based quantitative data using the PhyloQuant method. Evolutionary distances following identification and quantification of protein and peptide abundances using Proteome Discoverer and MaxQuant software were estimated for 11 species from six Leishmaniinae genera. Results clustered all dixenous species of the genus Leishmania, subgenera L. (Leishmania), L. (Viannia), and L. (Mundinia), sister to the dixenous species of genera Endotrypanum and Porcisia. Placed basal to the assemblage formed by all these parasites were the species of genera Zelonia, Crithidia, and Leptomonas, so far described as monoxenous of insects although eventually reported from humans. Inferences based on protein expression profiles were congruent with currently established phylogeny using DNA sequences. Our results reinforce PhyloQuant as a valuable approach to infer evolutionary relationships within Leishmaniinae, which is comprised of very tightly related trypanosomatids that are just beginning to be phylogenetically unraveled. In addition to evolutionary history, mapping of species-specific protein expression is paramount to understand differences in infection processes, tissue tropisms, potential to jump from insects to vertebrates including humans, and targets for species-specific diagnostic and drug development.

2.
Adv Exp Med Biol ; 1443: 23-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409414

RESUMEN

Protein glycosylation is a post-translational modification involving the addition of carbohydrates to proteins and plays a crucial role in protein folding and various biological processes such as cell recognition, differentiation, and immune response. The vast array of natural sugars available allows the generation of plenty of unique glycan structures in proteins, adding complexity to the regulation and biological functions of glycans. The diversity is further increased by enzymatic site preferences and stereochemical conjugation, leading to an immense amount of different glycan structures. Understanding glycosylation heterogeneity is vital for unraveling the impact of glycans on different biological functions. Evaluating site occupancies and structural heterogeneity aids in comprehending glycan-related alterations in biological processes. Several software tools are available for large-scale glycoproteomics studies; however, integrating identification and quantitative data to assess heterogeneity complexity often requires extensive manual data processing. To address this challenge, we present a python script that automates the integration of Byonic and MaxQuant outputs for glycoproteomic data analysis. The script enables the calculation of site occupancy percentages by glycans and facilitates the comparison of glycan structures and site occupancies between two groups. This automated tool offers researchers a means to organize and interpret their high-throughput quantitative glycoproteomic data effectively.


Asunto(s)
Glicopéptidos , Espectrometría de Masas en Tándem , Programas Informáticos , Glicosilación , Polisacáridos/química
3.
Adv Exp Med Biol ; 1443: 257-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409426

RESUMEN

Protein aggregation is a common mechanism in multiple neurodegenerative and heart diseases and the accumulation of proteins in aggregates is toxic to cells, causing injury and death. The degree of protein aggregation directly correlates with the severity of the disease. Misfolded proteins present thermodynamic barriers that culminate in the loss of structure and function and the exposure of hydrophobic residues. The exposure of hydrophobic residues is the driving force behind protein aggregation, as it reduces surface free energy and increases the propensity for the formation of large insoluble aggregates. Exploring the protein content of aggregates is fundamental to understanding their formation mechanism and pathophysiological effects. We demonstrate here a method for isolating aggregated protein content in human plasma and mouse brain samples. The samples were characterized by mass spectrometry analysis, transmission electron microscopy, and western blotting. We report the identification of proteins associated with neurodegenerative diseases in the isolated pellets. The western blotting analyses of the isolated pellet showed the positivity for CD89 and CD63, consolidated markers of exosomes, confirming the presence of exosomes within the pellet but not in the supernatant in human plasma. Notably, the concomitant isolation of exosomes together with the protein aggregates was feasible starting from 200 µL of human plasma. Moreover, the presented methodology separated albumin from the aggregated pellet, allowing identification of larger diversity of proteins through mass spectrometry analysis.


Asunto(s)
Exosomas , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Agregado de Proteínas , Proteínas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Microscopía Electrónica de Transmisión , Exosomas/metabolismo , Espectrometría de Masas
4.
Adv Exp Med Biol ; 1443: 1-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409413

RESUMEN

Extracellular vesicles (EVs) are bilayer membrane particles released from several cell types to the extracellular environment. EVs have a crucial role in cell-cell communication, involving different biological processes in health and diseases. Due to the potential of biomarkers for several diseases as diagnostic and therapeutic tools, it is relevant to understand the biology of the EVs and their content. One of the current challenges involving EVs is regarding the purification method, which is a critical step for EV's functional and characterization studies. Ultracentrifugation is the most used method for EV isolation, where the nanoparticles are separated in sequential centrifugation to isolate the EVs based on their size. However, for viscous biofluids such as plasma, there is a co-isolation of the most abundant proteins, which can impair the EV's protein identification due to the low abundance of these proteins and signal suppression by the most abundant plasma proteins. Emerging techniques have gained attention in recent years. Titanium dioxide (TiO2) is one of the most promising techniques due to its property for selective isolation based on the interaction with phospholipids in the EV membrane. Using a small amount of TiO2 beads and a low volume of plasma, it is possible to isolate EVs with reduced plasma protein co-isolation. This study describes a comprehensive workflow for the isolation and characterization of plasma extracellular vesicles (EVs) using mass spectrometry-based proteomics techniques. The aim of this chapter is describe the EV isolation using TiO2 beads enrichment and high-throughput mass spectrometry techniques to efficiently identify the protein composition of EVs in a fast and straightforward manner.


Asunto(s)
Vesículas Extracelulares , Titanio , Microesferas , Vesículas Extracelulares/metabolismo , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Plasma
5.
Exp Cell Res ; 414(2): 113086, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283101

RESUMEN

In 2015, Brazil reported an outbreak identified as Zika virus (ZIKV) infection associated with congenital abnormalities. To date, a total of 86 countries and territories have described evidence of Zika infection and recently the appearance of the African ZIKV lineage in Brazil highlights the risk of a new epidemic. The spectrum of ZIKV infection-induced alterations at both cellular and molecular levels is not completely elucidated. Here, we present for the first time the gene expression responses associated with prenatal ZIKV infection from ocular cells. We applied a recently developed non-invasive method (impression cytology) which use eye cells as a model for ZIKV studies. The ocular profiling revealed significant differences between exposed and control groups, as well as a different pattern in ocular transcripts from Congenital Zika Syndrome (CZS) compared to ZIKV-exposed but asymptomatic infants. Our data showed pathways related to mismatch repair, cancer, and PI3K/AKT/mTOR signaling and genes probably causative or protective in the modulation of ZIKV infection. Ocular cells revealed the effects of ZIKV infection on primordial neuronal cell genes, evidenced by changes in genes associated with embryonic cells. The changes in gene expression support an association with the gestational period of the infection and provide evidence for the resulting clinical and ophthalmological pathologies. Additionally, the findings of cell death- and cancer-associated deregulated genes raise concerns about the early onset of other potential pathologies including the need for tumor surveillance. Our results thus provide direct evidence that infants exposed prenatally to the Zika virus, not only with CZS but also without clinical signs (asymptomatic) express cellular and molecular changes with potential clinical implications.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Ojo/patología , Femenino , Humanos , Lactante , Fosfatidilinositol 3-Quinasas , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/genética , Virus Zika/genética , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/genética
6.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36982923

RESUMEN

In December 2019, COVID-19 emerged in China, and in January 2020, the World Health Organization declared a state of international emergency. Within this context, there is a significant search for new drugs to fight the disease and a need for in vitro models for preclinical drug tests. This study aims to develop a 3D lung model. For the execution, Wharton's jelly mesenchymal stem cells (WJ-MSC) were isolated and characterized through flow cytometry and trilineage differentiation. For pulmonary differentiation, the cells were seeded in plates coated with natural functional biopolymer matrix as membrane until spheroid formation, and then the spheroids were cultured with differentiation inductors. The differentiated cells were characterized using immunocytochemistry and RT-PCR, confirming the presence of alveolar type I and II, ciliated, and goblet cells. Then, 3D bioprinting was performed with a sodium alginate and gelatin bioink in an extrusion-based 3D printer. The 3D structure was analyzed, confirming cell viability with a live/dead assay and the expression of lung markers with immunocytochemistry. The results showed that the differentiation of WJ-MSC into lung cells was successful, as well as the bioprinting of these cells in a 3D structure, a promising alternative for in vitro drug testing.


Asunto(s)
Bioimpresión , COVID-19 , Gelatina de Wharton , Humanos , COVID-19/metabolismo , Células Cultivadas , Diferenciación Celular , Impresión Tridimensional , Ingeniería de Tejidos
7.
Adv Exp Med Biol ; 1382: 39-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36029403

RESUMEN

Aberrant glycosylation has been associated with several processes of tumorigenesis from cell signaling, migration and invasion, to immune regulation and metastasis formation. The biosynthesis of glycoconjugates is regulated through concerted and finely tuned enzymatic reactions. This includes the levels and activity of glycosyltransferases and glycosidases, nucleotide sugar metabolism, substrate availability, epigenetic condition, and cellular functional state. Glioblastoma (GBM) is the most aggressive brain tumor, frequently occurring in adults with overall survival not surpassing 17 months after diagnosis. GBM has been classified by the World Health Organization (WHO) as a grade 4 astrocytoma and stratified into G-CIMP, proneural, classical, and mesenchymal subtypes. Several biomolecular features associated with GBM aggressiveness have been elucidated; however, more studies are needed to elucidate the role of glycosylation in GBM pathology, looking at their potential as cancer targets. Here, we focus on the alteration of genes involved in protein N- and O-linked glycosylation in GBM. Specifically, the mRNA levels of glycogenes were analyzed using astrocytoma-TCGA-RNAseq datasets from public repositories. A total of 68 genes were differentially regulated in the most aggressive, mesenchymal subtype of GBM compared to the proneural and classical subtypes, and the expression of these genes was compared to normal brain tissues. Among them, we focused on 38 genes coding for proteins that belong to: 1) asparagine glycosylation (ALG); 2) glycosyltransferases (B3T, B4T); 3) fucosyltransferase (FUT); 4) acetylgalactosaminyltransferases (GALNT); 5) hexosaminidase (HEX); 6) mannosidase (MAN); 7) acetylglucosaminyltransferase (MGAT); 8) sialidase or neuraminidase (NEU); 9) solute carrier 35 family (SLC); and 10) sialyltransferase (ST). The differential expression of some genes was already reported in several solid tumors; however, several of them were found to be dysregulated in GBM for the first time. These data represent an important starting point to perform further orthogonal and functional validations to pinpoint the role of these glycogenes in GBM as diagnostic and therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glicosilación , Glicosiltransferasas , Humanos
8.
J Proteome Res ; 20(10): 4693-4707, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533964

RESUMEN

Medulloblastomas (MBs) and glioblastomas (GBMs) are high-incidence central nervous system tumors. Different origin sites and changes in the tissue microenvironment have been associated with the onset and progression. Here, we describe differences between the extracellular matrix (ECM) signatures of these tumors. We compared the proteomic profiles of MB and GBM decellularized tumor samples between each other and their normal decellularized brain site counterparts. Our analysis revealed that 19, 28, and 11 ECM proteins were differentially expressed in MBs, GBMs, and in both MBs and GBMs, respectively. Next, we validated key findings by using a protein tissue array with 53 MB and 55 GBM cases and evaluated the clinical relevance of the identified differentially expressed proteins through their analysis on publicly available datasets, 763 MB samples from the GSE50161 and GSE85217 studies, and 115 GBM samples from RNAseq-TCGA. We report a shift toward a denser fibrillary ECM as well as a clear alteration in the glycoprotein signature, which influences the tumor pathophysiology. MS data have been submitted to the PRIDE repository, project accession: PXD023350.


Asunto(s)
Neoplasias Encefálicas , Matriz Extracelular , Glioblastoma , Meduloblastoma , Neoplasias Encefálicas/genética , Matriz Extracelular/patología , Glioblastoma/genética , Humanos , Meduloblastoma/genética , Proteoma/genética , Proteómica , Microambiente Tumoral
9.
Mol Cell Proteomics ; 18(2): 182-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30242111

RESUMEN

Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.


Asunto(s)
Malaria Falciparum/metabolismo , Placenta/metabolismo , Complicaciones Parasitarias del Embarazo/metabolismo , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Glicosilación , Humanos , Sistema de Señalización de MAP Quinasas , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Fosforilación , Placenta/parasitología , Embarazo , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Mapas de Interacción de Proteínas
10.
J Proteome Res ; 19(11): 4496-4515, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32686424

RESUMEN

Congenital Zika syndrome was first described due to increased incidence of congenital abnormalities associated with Zika virus (ZIKV) infection. Since the eye develops as part of the embryo central nervous system (CNS) structure, it becomes a specialized compartment able to display symptoms of neurodegenerative diseases and has been proposed as a noninvasive approach to the early diagnosis of neurological diseases. Ocular lesions result from defects that occurred during embryogenesis and can become apparent in newborns exposed to ZIKV. Furthermore, the absence of microcephaly cannot exclude the occurrence of ocular lesions and other CNS manifestations. Considering the need for surveillance of newborns and infants with possible congenital exposure, we developed a method termed cellular imprinting proteomic assay (CImPA) to evaluate the ocular surface proteome specific to infants exposed to ZIKV during gestation compared to nonexposure. CImPA combines surface cells and fluid capture using membrane disks and a large-scale quantitative proteomics approach, which allowed the first-time report of molecular alterations such as neutrophil degranulation, cell death signaling, ocular and neurological pathways, which are associated with ZIKV infection with and without the development of congenital Zika syndrome, CZS. Particularly, infants exposed to ZIKV during gestation and without early clinical symptoms could be detected using the CImPA method. Lastly, this methodology has broad applicability as it could be translated in the study of several neurological diseases to identify novel diagnostic biomarkers. Data are available via ProteomeXchange with identifier PXD014038.


Asunto(s)
Microcefalia , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Proteómica , Infección por el Virus Zika/diagnóstico
12.
Mem Inst Oswaldo Cruz ; 113(5): e170385, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29768530

RESUMEN

BACKGROUND: Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES: To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS: The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS: Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.


Asunto(s)
Codón/genética , Genoma Viral/genética , Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/virología , Virus Zika/genética , África , Asia , Brasil/epidemiología , Humanos , Pandemias , Filogenia , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/epidemiología
13.
Adv Protein Chem Struct Biol ; 138: 401-428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38220431

RESUMEN

The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Proteoma/metabolismo , Proteómica/métodos , Proteínas Protozoarias/metabolismo , Enfermedad de Chagas/parasitología
14.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111003, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936799

RESUMEN

Myotis davidii cystatin A (MdCSTA), a stefin A-like from the Chinese native bat species M. davidii, was expressed as a recombinant protein and functionally characterized as a strong inhibitor of the cysteine proteases papain, human cathepsins L and B and the tick cathepsin L-like BmCL1. Despite the highly conserved amino acid sequences among stefins A from different vertebrates, MdCSTA presents a Methionine-2 residue at the N-terminal region and the second binding loop (pos 73-79) that differs from human stefin A (HsCSTA) and might be related to the lower inhibition constant (Ki) value presented by this inhibitor in comparison to human stefin A inhibition to cathepsin B. Therefore, to investigate the importance of these variable regions in cathepsin B inhibition, recombinant stefins A MdCSTA and HsCSTA containing mutations at the second amino acid residue and second binding loop were expressed and evaluated in kinetic assays. Enzymatic inhibition assays with cathepsin B revealed that switching the amino acid residues at position 2 and second binding loop region between bat and human CSTAs improved the HsCSTA's and reduced MdCSTA's inhibitory activity. Additionally, molecular docking analysis estimated lower energy values for the complex between MdCSTA-cathepsin B, in comparison to human CSTA-cathepsin B, while the mutants presented intermediate values, suggesting that other regions might contribute to the higher inhibitory activity against cathepsin B by MdCSTA. In conclusion, MdCSTA, the first bat's stefin A-like inhibitor to be functionally characterized, presented a higher inhibitory activity against cathepsin B in comparison to the human inhibitor, which is partially related to the glutamine-rich second binding loop and Met-2. Further structural analysis should be performed to elucidate potential inhibitor effects on cysteine proteinases.

15.
Viruses ; 15(2)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36851505

RESUMEN

BACKGROUND: In 2019, the world witnessed the onset of an unprecedented pandemic. By February 2022, the infection by SARS-CoV-2 has already been responsible for the death of more than 5 million people worldwide. Recently, we and other groups discovered that SARS-CoV-2 infection induces ER stress and activation of the unfolded protein response (UPR) pathway. Degradation of misfolded/unfolded proteins is an essential element of proteostasis and occurs mainly in lysosomes or proteasomes. The N-terminal arginylation of proteins is characterized as an inducer of ubiquitination and proteasomal degradation by the N-degron pathway. RESULTS: The role of protein arginylation during SARS-CoV-2 infection was elucidated. Protein arginylation was studied in Vero CCL-81, macrophage-like THP1, and Calu-3 cells infected at different times. A reanalysis of in vivo and in vitro public omics data combined with immunoblotting was performed to measure levels of arginyl-tRNA-protein transferase (ATE1) and its substrates. Dysregulation of the N-degron pathway was specifically identified during coronavirus infections compared to other respiratory viruses. We demonstrated that during SARS-CoV-2 infection, there is an increase in ATE1 expression in Calu-3 and Vero CCL-81 cells. On the other hand, infected macrophages showed no enzyme regulation. ATE1 and protein arginylation was variant-dependent, as shown using P1 and P2 viral variants and HEK 293T cells transfection with the spike protein and receptor-binding domains (RBD). In addition, we report that ATE1 inhibitors, tannic acid and merbromine (MER) reduce viral load. This finding was confirmed in ATE1-silenced cells. CONCLUSIONS: We demonstrate that ATE1 is increased during SARS-CoV-2 infection and its inhibition has potential therapeutic value.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Proteolisis , Complejo de la Endopetidasa Proteasomal , Células HEK293
16.
Genes (Basel) ; 14(8)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628675

RESUMEN

Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy.


Asunto(s)
Malaria , Placenta , Recién Nacido , Embarazo , Lactante , Femenino , Humanos , Animales , Ratones , Ratones Endogámicos CBA , Activación de Complemento , Biomarcadores
17.
Viruses ; 15(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112979

RESUMEN

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ratones Transgénicos , Pandemias , SARS-CoV-2/genética , Virulencia
18.
Mol Neurobiol ; 60(9): 5034-5054, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37243816

RESUMEN

Amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD)-linked mutations in CCNF have been shown to cause dysregulation to protein homeostasis. CCNF encodes for cyclin F, which is part of the cyclin F-E3 ligase complex SCFcyclinF known to ubiquitylate substrates for proteasomal degradation. In this study, we identified a function of cyclin F to regulate substrate solubility and show how cyclin F mechanistically underlies ALS and FTD disease pathogenesis. We demonstrated that ALS and FTD-associated protein sequestosome-1/p62 (p62) was a canonical substrate of cyclin F which was ubiquitylated by the SCFcyclinF complex. We found that SCFcyclin F ubiquitylated p62 at lysine(K)281, and that K281 regulated the propensity of p62 to aggregate. Further, cyclin F expression promoted the aggregation of p62 into the insoluble fraction, which corresponded to an increased number of p62 foci. Notably, ALS and FTD-linked mutant cyclin F p.S621G aberrantly ubiquitylated p62, dysregulated p62 solubility in neuronal-like cells, patient-derived fibroblasts and induced pluripotent stem cells and dysregulated p62 foci formation. Consistently, motor neurons from patient spinal cord tissue exhibited increased p62 ubiquitylation. We suggest that the p.S621G mutation impairs the functions of cyclin F to promote p62 foci formation and shift p62 into the insoluble fraction, which may be associated to aberrant mutant cyclin F-mediated ubiquitylation of p62. Given that p62 dysregulation is common across the ALS and FTD spectrum, our study provides insights into p62 regulation and demonstrates that ALS and FTD-linked cyclin F mutant p.S621G can drive p62 pathogenesis associated with ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Esclerosis Amiotrófica Lateral/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclinas/metabolismo , Ubiquitinación , Mutación/genética
19.
Methods Mol Biol ; 2511: 175-182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35838960

RESUMEN

Matrix-assisted laser desorption/ionization source coupled with time-of-flight mass analyzer mass spectrometry (MALDI-TOF MS) is being widely used to obtain proteomic profiles for clinical purposes, as a fast, low-cost, robust, and efficient technique. Here we describe a method for biofluid analysis using MALDI-TOF MS for rapid acquisition of proteomic signatures of COVID-19 infected patients. By using solid-phase extraction, the method allows the analysis of biofluids in less than 15 min.


Asunto(s)
COVID-19 , Proteómica , Biomarcadores , COVID-19/diagnóstico , Humanos , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
Methods Mol Biol ; 2511: 375-394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35838976

RESUMEN

Machine learning is being employed for the development of diagnostic methods for several diseases, but prognostic techniques are still poorly explored. The development of such approaches is essential to assist healthcare workers to ensure the most appropriate treatment for patients. In this chapter, we demonstrate a detailed protocol for the application of machine learning to MALDI-TOF MS spectra of COVID-19-infected plasma samples for risk classification and biomarker identification.


Asunto(s)
COVID-19 , Biomarcadores/análisis , COVID-19/diagnóstico , Humanos , Aprendizaje Automático , Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA