RESUMEN
Neurodegenerative diseases (ND) pose a serious health burden to society and healthcare systems alike, with increasing incidence rates especially within aging populations. Alzheimer's disease (AD) is the most prevalent type of ND or dementia, followed by Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. Progressive neurological dysfunction and regional neuronal loss constitute the common characteristics of ND. Many ND are accompanied by accumulation of protein aggregates such as extracellular amyloid-ß (in AD), intraneuronal hyper-phosphorylated tau (in AD), or α-synuclein (in PD). Two main systems are responsible for the clearance of damaged, dysfunctional or senescent proteins inside cells: the autophagy-lysosomal pathway and the ubiquitin-proteasome system. The importance of lysosomes in neurodegenerative processes is further highlighted by clinical phenotypes of lysosomal storage disorders (LSDs), comprising more than 70 inheritable diseases caused by mutations in lysosomal enzymes or lysosomal membrane proteins, often resulting in severe neurodegeneration. Dysfunctional lysosomal proteins and enzymes result in the lysosomal accumulation of undigested macromolecules, e.g. lipids, glycoproteins, glycosaminoglycans, or gangliosides. Defects in intracellular transport pathways involving endosomes and lysosomes are increasingly recognized as drivers of neurodegenerative disease pathology including AD and PD. Thus, accumulation of damaged proteins and organelles (e.g. mitochondria) in neurons and glial cells overwhelms the capacity of intracellular recycling and degradation mechanisms, exacerbating disease pathology. Endolysosomal ion channels have recently been established as important regulators of lysosomal exocytosis, ion homeostasis/pH, endolysosomal trafficking, fusion and fission, and autophagy. In particular two non-selective endolysosomal cation channel families, the mucolipin/TRPML/MCOLN channels and the two-pore channels/TPCs will be discussed here as potential pharmacological targets for LSD/ND treatment.
Asunto(s)
Enfermedades Neurodegenerativas , Canales de Potencial de Receptor Transitorio , Transporte Biológico , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Canales de Potencial de Receptor Transitorio/metabolismoRESUMEN
Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.
Asunto(s)
Macrófagos Alveolares/enzimología , Metaloproteinasa 12 de la Matriz/metabolismo , Elastasa Pancreática/metabolismo , Enfisema Pulmonar/enzimología , Canales de Potencial de Receptor Transitorio/deficiencia , Animales , Modelos Animales de Enfermedad , Endosomas/metabolismo , Femenino , Humanos , Pulmón/enzimología , Metaloproteinasa 12 de la Matriz/genética , Ratones , Ratones Noqueados , Elastasa Pancreática/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Canales de Potencial de Receptor Transitorio/genéticaRESUMEN
The cation channel TRPML1 is an important regulator of lysosomal function and autophagy. Loss of TRPML1 is associated with neurodegeneration and lysosomal storage disease, while temporary inhibition of this ion channel has been proposed to be beneficial in cancer therapy. Currently available TRPML1 channel inhibitors are not TRPML isoform selective and block at least two of the three human isoforms. We have now identified the first highly potent and isoform-selective TRPML1 antagonist, the steroid 17ß-estradiol methyl ether (EDME). Two analogs of EDME, PRU-10 and PRU-12, characterized by their reduced activity at the estrogen receptor, have been identified through systematic chemical modification of the lead structure. EDME and its analogs, besides being promising new small molecule tool compounds for the investigation of TRPML1, selectively affect key features of TRPML1 function: autophagy induction and transcription factor EB (TFEB) translocation. In addition, they act as inhibitors of triple-negative breast cancer cell migration and invasion.
Asunto(s)
Autofagia/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Estradiol/análogos & derivados , Estradiol/farmacología , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Cultivadas , Femenino , Humanos , Invasividad Neoplásica , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Two-pore channel 2 (TPC2) resides in endolysosomal membranes but also in lysosome-related organelles such as the melanin producing melanosomes. Gain-of-function polymorphisms in hTPC2 are associated with decreased melanin production and blond hair color. Vice versa genetic ablation of TPC2 increases melanin production. We show here an inverse correlation between melanin production and melanoma proliferation, migration, and invasion due to the dual activity of TPC2 in endolysosomes and melanosomes. Our results are supported by both genetic ablation and pharmacological inhibition of TPC2. Mechanistically, our data show that loss/block of TPC2 results in reduced protein levels of MITF, a major regulator of melanoma progression, but an increased activity of the melanin-generating enzyme tyrosinase. TPC2 inhibition thus provides a twofold benefit in melanoma prevention and treatment by increasing, through interference with tyrosinase activity, the synthesis of UV blocking melanin in melanosomes and by decreasing MITF-driven melanoma progression by increased GSK3ß-mediated MITF degradation.