Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 386(18): 1721-1731, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35353979

RESUMEN

BACKGROUND: The efficacy of ivermectin in preventing hospitalization or extended observation in an emergency setting among outpatients with acutely symptomatic coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unclear. METHODS: We conducted a double-blind, randomized, placebo-controlled, adaptive platform trial involving symptomatic SARS-CoV-2-positive adults recruited from 12 public health clinics in Brazil. Patients who had had symptoms of Covid-19 for up to 7 days and had at least one risk factor for disease progression were randomly assigned to receive ivermectin (400 µg per kilogram of body weight) once daily for 3 days or placebo. (The trial also involved other interventions that are not reported here.) The primary composite outcome was hospitalization due to Covid-19 within 28 days after randomization or an emergency department visit due to clinical worsening of Covid-19 (defined as the participant remaining under observation for >6 hours) within 28 days after randomization. RESULTS: A total of 3515 patients were randomly assigned to receive ivermectin (679 patients), placebo (679), or another intervention (2157). Overall, 100 patients (14.7%) in the ivermectin group had a primary-outcome event, as compared with 111 (16.3%) in the placebo group (relative risk, 0.90; 95% Bayesian credible interval, 0.70 to 1.16). Of the 211 primary-outcome events, 171 (81.0%) were hospital admissions. Findings were similar to the primary analysis in a modified intention-to-treat analysis that included only patients who received at least one dose of ivermectin or placebo (relative risk, 0.89; 95% Bayesian credible interval, 0.69 to 1.15) and in a per-protocol analysis that included only patients who reported 100% adherence to the assigned regimen (relative risk, 0.94; 95% Bayesian credible interval, 0.67 to 1.35). There were no significant effects of ivermectin use on secondary outcomes or adverse events. CONCLUSIONS: Treatment with ivermectin did not result in a lower incidence of medical admission to a hospital due to progression of Covid-19 or of prolonged emergency department observation among outpatients with an early diagnosis of Covid-19. (Funded by FastGrants and the Rainwater Charitable Foundation; TOGETHER ClinicalTrials.gov number, NCT04727424.).


Asunto(s)
Antiinfecciosos , Tratamiento Farmacológico de COVID-19 , Ivermectina , Adulto , Atención Ambulatoria , Antiinfecciosos/efectos adversos , Antiinfecciosos/uso terapéutico , Teorema de Bayes , Método Doble Ciego , Hospitalización , Humanos , Ivermectina/efectos adversos , Ivermectina/uso terapéutico , SARS-CoV-2 , Resultado del Tratamiento
2.
Drug Metab Dispos ; 51(8): 1035-1045, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37169511

RESUMEN

Pediatric physiologically based pharmacokinetics modeling in drug development has grown in the past decade but uncertainty remains regarding ontogeny of some drug metabolizing enzymes. In this study, a midazolam and 1-hydroxymidazolam physiologically based pharmacokinetic model (PBPK) model was developed and used to define the ontogeny for hepatic cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyl transferase (UGT) 2B4. Data for model development and pharmacokinetic studies on intravenous midazolam in adults and pediatrics were collated from the literature. The PBPK model was verified in the adult population and then used to compare the performance of two ontogeny profiles for CYP3A4 in terms of parent drug elimination in pediatrics. Four studies also published data on the 1-hydroxymidazolam, and this was used to evaluate the known ontogeny for UGT2B4.For midazolam elimination, the Upreti CYP3A4 ontogeny performed better than Salem; mean error (bias) and mean squared error (precision) were 0.14 and 0.064 compared with 0.69 and 1.21, respectively. For 1-hydroxymidazolam elimination, the Simcyp default ontogeny of UGT2B4 appeared to perform best for studies covering the age range 0.5 to 15.7 years, while for a study in younger ages 0 to 1 years it was the Badee UGT2B4 ontogeny. In preterm neonates, overall expression of UGT appeared to be around 10% of that in adults.Identifying the optimal model of CYP3A4 ontogeny is important for the regulatory use of PBPK. The results for midazolam are conclusive but research about other CYP3A4 metabolized compounds will underpin generalizability of the CYP3A4 ontogeny. UGT2B4 ontogeny is less certain, but this study indicates the most likely scenarios. SIGNIFICANCE STATEMENT: A PBPK model for midazolam and 1-hydroxymidazolam was developed to test various ontogeny scenarios for CYP3A4 and UGT2B4. The CYP3A4 ontogeny of Upreti resulted in more accurate prediction of midazolam CL across nine clinical studies, age range birth to 18 years. 1-Hydroxy midazolam was used as a marker of UGT. The Simcyp default 'no ontogeny' profiles for UGT2B4 performed the best; however, for <1 year of age, there was some evidence of overactivity of this enzyme compared to adults.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Recién Nacido , Adulto , Niño , Humanos , Lactante , Preescolar , Adolescente , Midazolam/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferasa/metabolismo , Hígado/metabolismo , Modelos Biológicos , Interacciones Farmacológicas
3.
Biopharm Drug Dispos ; 38(3): 260-270, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28004396

RESUMEN

The impact of different single oral doses of ketoconazole (KTZ) (100, 200 and 400 mg) and of staggering its dosage (400 mg at -12, -2, 0, 2 and 4 h), with respect to the administration of a single 5 mg oral dose of midazolam (MDZ) on the extent of inhibition of the metabolism of the latter, was evaluated in healthy subjects in two separate studies. Escalation of the ketoconazole dosage resulted in 2.3 (1.9), 2.7 (1.7) and 4.2 (2.5) -fold increases in the mean AUC(0,12h) (and Cmax ) values of midazolam. Dose-staggering was associated with 3.9 (2.5), 4.9 (2.9), 5.4 (2.8), 2.0 (1.3) and 1.2 (0.9) -fold increases in the mean AUC(0,12h) (and Cmax ) of midazolam. These findings could be predicted by physiologically based pharmacokinetic (PBPK) modelling using the ADAM (advanced dissolution absorption and metabolism) model within the Simcyp Simulator (Version 12 Release 2) to characterize the absorption kinetics of ketoconazole with respect to disintegration time, supersaturation ratio and precipitation rate. This study also emphasizes a need to account for inter-individual variability in the gut wall and systemic exposure of inhibitors with physicochemical properties similar to ketoconazole, in particular in their rate of oral absorption and when using different pharmaceutical formulations, in designing and evaluating the extent of drug-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Cetoconazol/farmacología , Hígado/metabolismo , Midazolam/farmacocinética , Adulto , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Interacciones Farmacológicas , Femenino , Humanos , Cetoconazol/sangre , Masculino , Midazolam/sangre , Persona de Mediana Edad , Modelos Biológicos
4.
Drug Metab Dispos ; 44(7): 1090-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26862026

RESUMEN

Information on the developmental changes in biliary excretion (BE) of drugs is sparse. The aims of this study were to collate literature data on the pharmacokinetics of biliary excretion of drugs used in pediatrics and to apply a physiologically based pharmacokinetic (PBPK) model to predict their systemic clearance (CL) with a view to elucidating age-related changes in biliary excretion. Drug parameters for azithromycin, ceftriaxone, and digoxin administered intravenously and buprenorphine (intravenous and sublingual) were collated from the literature and used in the Simcyp Simulator to predict adult CL values, which were then validated against observed data. The change in CL with age was simulated in the pediatric model and compared with observed data; where necessary, the ontogeny function associated with BE was applied to recover the age-related CL. For azithromycin a fraction of adult BE activity of 15% was necessary to predict the CL in neonates (26 weeks gestational age) and 100% activity was apparent by 7 months. For ceftriaxone and digoxin full BE activity appeared to be present at term birth; for digoxin, an adult BE activity of 10% was needed to predict the CL in premature neonates (30 weeks gestational age). The CL of buprenorphine with age was described by the ontogeny of the major elimination pathways (CYP3A4 and UGT1A1) with no ontogeny assumed for the biliary component. Thus, the ontogeny of BE for all four drugs appears to be rapid and they attain adult levels at birth or within the first few months of postnatal age.


Asunto(s)
Envejecimiento/metabolismo , Bilis/metabolismo , Eliminación Hepatobiliar , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Biología de Sistemas/métodos , Administración Intravenosa , Administración Sublingual , Factores de Edad , Biotransformación , Humanos , Lactante , Recién Nacido , Preparaciones Farmacéuticas/administración & dosificación
5.
Drug Metab Dispos ; 44(6): 821-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27026679

RESUMEN

Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas/fisiología , Rifampin/metabolismo , Administración Oral , Carbamazepina/metabolismo , Inducción Enzimática/fisiología , Tracto Gastrointestinal/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Modelos Biológicos , Fenobarbital/metabolismo , Fenitoína/metabolismo , ARN Mensajero/metabolismo
6.
Clin Pharmacol Ther ; 115(2): 299-308, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37971208

RESUMEN

A physiologically-based pharmacokinetic (PBPK) model was developed to simulate plasma concentrations of tucatinib (TUKYSA®) after single-dose or multiple-dose administration of 300 mg b.i.d. orally. This PBPK model was subsequently applied to support evaluation of drug-drug interaction (DDI) risk as a perpetrator resulting from tucatinib inhibition of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was also applied to support evaluation of DDI risk as a victim resulting from co-administration with CYP3A4 or CYP2C8 inhibitors, or a CYP3A4 inducer. After refinement with clinical DDI data, the final PBPK model was able to recover the clinically observed single and multiple-dose plasma concentrations for tucatinib when tucatinib was administered as a single agent in healthy subjects. In addition, the final model was able to recover clinically observed plasma concentrations of tucatinib when administered in combination with itraconazole, rifampin, or gemfibrozil as well as clinically observed plasma concentrations of probe substrates of CYP3A4, CYP2C8, CYP2C9, P-gp, or MATE1/2-K. The PBPK model was then applied to prospectively predict the potential perpetrator or victim DDIs with other substrates, inducers, or inhibitors. To simulate a potential interaction with a moderate CYP2C8 inhibitor, two novel PBPK models representing a moderate CYP2C8 inhibitor and a sensitive CYP2C8 substrate were developed based on the existing PBPK models for gemfibrozil and rosiglitazone, respectively. The simulated population geometric mean area under the curve ratio of tucatinib with a moderate CYP2C8 inhibitor ranged from 1.98- to 3.08-fold, and based on these results, no dose modifications were proposed for moderate CYP2C8 inhibitors for the tucatinib label.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2C8 , Gemfibrozilo , Oxazoles , Piridinas , Quinazolinas , Humanos , Gemfibrozilo/farmacocinética , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Interacciones Farmacológicas , Modelos Biológicos , Inhibidores del Citocromo P-450 CYP3A
7.
Clin Pharmacol Ther ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38686708

RESUMEN

Model-informed drug development (MIDD) is a powerful quantitative approach that plays an integral role in drug development and regulatory review. While applied throughout the life cycle of the development of new drugs, a key application of MIDD is to inform clinical trial design including dose selection and optimization. To date, physiologically-based pharmacokinetic (PBPK) modeling, an established component of the MIDD toolkit, has mainly been used for assessment of drug-drug interactions (DDIs) and consequential dose adjustments in regulatory submissions. As a result of recent scientific advances and growing confidence in the utility of the approach, PBPK models are being increasingly applied to provide dose recommendations for subjects with differing ages, genetics, and disease states. In this review, we present our perspective on the current landscape of regulatory acceptance of PBPK applications supported by relevant case studies. We also discuss the recent progress and future challenges associated with expanding the utility of PBPK models into emerging areas for regulatory decision making, especially dose optimization in highly vulnerable and understudied populations and facilitating diversity in clinical trials.

8.
Clin Transl Sci ; 17(4): e13785, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572980

RESUMEN

Real-world data (RWD) and real-world evidence (RWE) are now being routinely used in epidemiology, clinical practice, and post-approval regulatory decisions. Despite the increasing utility of the methodology and new regulatory guidelines in recent years, there remains a lack of awareness of how this approach can be applied in clinical pharmacology and translational research settings. Therefore, the American Society of Clinical Pharmacology & Therapeutics (ASCPT) held a workshop on March 21st, 2023 entitled "Advancing the Utilization of Real-World Data (RWD) and Real-World Evidence (RWE) in Clinical Pharmacology and Translational Research." The work described herein is a summary of the workshop proceedings.


Asunto(s)
Farmacología Clínica , Humanos , Investigación Biomédica Traslacional , Ciencia Traslacional Biomédica
9.
Xenobiotica ; 43(12): 1027-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23641955

RESUMEN

A major pathway of elimination of the prostaglandin D2 receptor 1 antagonist laropiprant in humans is by uridine diphosphate-glucuronosyltransferase (UGT)-mediated biotransformation. In this study, liver and kidney relative activity factors were developed for UGT1A1, 1A9 and 2B7 to allow for in vitro-in vivo extrapolation of intrinsic clearance data to whole organ clearance using recombinant human UGT isoforms applying this to laropiprant as a model substrate. The total body metabolic clearance of laropiprant determined using this approach (5.0 L/hr) agreed well with the value determined in vivo following intravenous administration to healthy human volunteers (5.1 L/hr). The results suggest that approximately 36%, 36% and 28% of the hepatic metabolic clearance of laropiprant was mediated by UGT1A1, 1A9 and 2B7, respectively. Likewise, 80% and 20% of the renal metabolic clearance was mediated by UGT1A9 and 2B7, respectively. Furthermore, the data suggested that the contribution of the kidney to the overall total metabolic clearance was minor relative to the liver (≈ 12%).


Asunto(s)
Glucuronosiltransferasa/metabolismo , Indoles/farmacocinética , Proteínas Recombinantes/metabolismo , Administración Intravenosa , Adulto , Estradiol/metabolismo , Femenino , Glucurónidos/metabolismo , Humanos , Indoles/administración & dosificación , Indoles/sangre , Indoles/química , Isoenzimas/metabolismo , Riñón/metabolismo , Cinética , Masculino , Tasa de Depuración Metabólica , Microsomas Hepáticos/metabolismo , Propofol/metabolismo , Especificidad por Sustrato , UDP Glucuronosiltransferasa 1A9 , Adulto Joven , Zidovudina/metabolismo
10.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 598-609, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840414

RESUMEN

Although single-dose ivermectin has been widely used in mass-drug administration programs for onchocerciasis and lymphatic filariasis for many years, ivermectin may have utility as an endectocide with mosquito-lethal effects at dosages greater and longer than those used to treat helminths. The final physiologically-based pharmacokinetic (PBPK) model for ivermectin described here was able to capture, with reasonable accuracy, observed plasma drug concentration-time profiles and exposures of ivermectin after a single oral dose of the drug in healthy male (dose range 6-30 mg) and female subjects, in both fasted and fed states, in African patients with onchocerciasis (150 µg/kg) and in African children. The PBPK model can be used for further work on lactation, pediatric dosing (considering CYP3A4 and Pg-p ontogenies), and pregnancy, especially if nonstandard doses will be used. The key findings of our study indicate that absorption of ivermectin may be highly dependent on bile micelle-mediated solubility. The drug is highly lipophilic and permeable, and its plasma exposure appears to be associated with the body mass index of an individual. These are all factors that need to be considered when extrapolating to more complex oral formulations or alternative routes of administration. Administering lower doses over a longer period may attenuate the dependence on bile micelle-mediated solubility. With relevant inputs, the verified PBPK model developed here could be used to simulate plasma exposures following administration of ivermectin by complex generics in development.


Asunto(s)
Ivermectina , Oncocercosis , Animales , Humanos , Masculino , Femenino , Niño , Ivermectina/farmacocinética , Oncocercosis/tratamiento farmacológico , Micelas , Administración Oral , Modelos Biológicos
11.
Clin Pharmacol Ther ; 114(1): 182-191, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37078251

RESUMEN

The antiretroviral drug efavirenz remains widely used in children and mothers during breastfeeding in tuberculosis-endemic areas. Evaluating the safety of efavirenz during breastfeeding requires an understanding of its pharmacokinetics (PKs) in breast milk, its exposure in the breastfed infant, and the potential influence of polymorphisms in drug disposition genes. The interplay of these factors between the mother and the nursing infant is a complex scenario that can be readily investigated using physiologically-based PK (PBPK) modeling. A verified PBPK model for efavirenz describing the CYP3A4- and CYP2B6-mediated auto-induction during multiple dosing was reported previously and was applied in this study to predict the exposure of efavirenz in vulnerable populations, including children (down to the age of 3 months), mothers, and breastfeeding infants, accounting for the various CYP2B6 genotypes. Predicted pharmacokinetic parameters for mothers, breastfeeding infants, and children aged ≥ 3 months were reasonably consistent with observed data, irrespective of CYP2B6 genotype. The clinically significant trend toward higher infant efavirenz exposure from GG/GG to TT/TT composite maternal/infant CYP2B6 genotypes was captured reasonably well by the PBPK model. Thereafter, simulations were performed to determine the adequacy of the current World Health Organization (WHO; ≥ 3 years) and the US Food and Drug Administration (FDA; ≥ 3 months) weight-based dosing regimens for efavirenz in children according to CYP2B6 genotype. The findings of this study indicate that PBPK models can be used in designing studies in vulnerable populations and providing guidance on optimal doses based on developmental physiology and pharmacogenetics.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Femenino , Humanos , Lactante , Niño , Citocromo P-450 CYP2B6/genética , Madres , Lactancia Materna , Benzoxazinas/farmacocinética , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética
12.
Clin Pharmacol Ther ; 113(3): 735-745, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36306419

RESUMEN

Robust prediction of pharmacokinetics (PKs) in pediatric subjects of diverse ages, ethnicities, and morbidities is critical. Qualification of pediatric physiologically-based pharmacokinetic (P-PBPK) models is an essential step toward enabling precision dosing of these vulnerable groups. Twenty-two manuscripts involving P-PBPK predictions and corresponding observed PK data (e.g., area under the curve and clearance) for 22 small-molecule compounds metabolized by CYP (3A4, 1A2, and 2C9), UGT (1A9 and 2B7), FMO3, renal, non-renal, and complex routes were identified; ratios of mean predicted/observed (P/O) PK parameters were calculated. Seventy-eight of 115 mean predicted PK parameters were within 0.8 to 1.25-fold of observed data, 98 within 0.67 to 1.5-fold, 109 within 2-fold, and only 6 P/O ratios were outside of these bounds. A set of 12 CYP3A4-metabolized compounds and a set of 6 metabolized by other enzymes, CYP1A2 (1 compound), CYP2C9 (2 compounds), UGT1A9 (1 compound) and UGT2B7 (2 compounds) had 56 of 59 and 22 of 25 mean P/O ratios, respectively, that fell within the > 0.5 and < 2.0-fold boundaries. For compounds covering renal, non-renal, complex, and FM03 routes of elimination, 29 of 31 mean P/O ratios fell within the 0.67 to 1.5-fold bounds, including 4 of 5 P/O ratios from newborns. P-PBPK modeling and simulation is a strategic component of the complement of precision dosing methods and has a vital role to play in dose adjustment in vulnerable pediatric populations, such as those with disease or in different ethnic groups. Qualification of such models is an essential step toward acceptance of this methodology by regulators.


Asunto(s)
Citocromo P-450 CYP3A , Modelos Biológicos , Niño , Humanos , Recién Nacido , Simulación por Computador , Citocromo P-450 CYP3A/metabolismo , Etnicidad , Riñón/metabolismo
13.
Pharmaceutics ; 15(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37514108

RESUMEN

Imatinib is mainly metabolised by CYP3A4 and CYP2C8 and is extensively bound to α-acid glycoprotein (AAG). A physiologically based pharmacokinetic (PBPK) model for imatinib describing the CYP3A4-mediated autoinhibition during multiple dosing in gastrointestinal stromal tumor patients with normal renal function was previously reported. After performing additional verification, the PBPK model was applied to predict the exposure of imatinib after multiple dosing in cancer patients with varying degrees of renal impairment. In agreement with the clinical data, there was a positive correlation between AAG levels and imatinib exposure. A notable finding was that for recovery of the observed data in cancer patients with moderate RI (CrCL 20 to 39 mL/min), reductions of hepatic CYP3A4 and CYP2C8 abundances, which reflect the effects of RI, had to be included in the simulations. This was not the case for mild RI (CrCL 40 to 50 mL/min). The results support the finding of the clinical study, which demonstrated that both AAG levels and the degree of renal impairment are key components that contribute to the interpatient variability associated with imatinib exposure. As indicated in the 2020 FDA draft RI guidance, PBPK modelling could be used to support an expanded inclusion of patients with RI in clinical studies.

14.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1335-1346, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37587640

RESUMEN

As part of a collaboration between Medicines for Malaria Venture (MMV), Certara UK and Monash University, physiologically-based pharmacokinetic (PBPK) models were developed for 20 antimalarials, using data obtained from standardized in vitro assays and clinical studies within the literature. The models have been applied within antimalarial drug development at MMV for more than 5 years. During this time, a strategy for their impactful use has evolved. All models are described in the supplementary material and are available to researchers. Case studies are also presented, demonstrating real-world development and clinical applications, including the assessment of the drug-drug interaction liability between combination partners or with co-administered drugs. This work emphasizes the benefit of PBPK modeling for antimalarial drug development and decision making, and presents a strategy to integrate it into the research and development process. It also provides a repository of shared information to benefit the global health research community.


Asunto(s)
Antimaláricos , Humanos , Desarrollo de Medicamentos , Proyectos de Investigación , Universidades
15.
Eur J Clin Pharmacol ; 68(6): 951-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22258279

RESUMEN

PURPOSE: To derive estimates of CYP1A2 abundance as a function of daily cigarette consumption and use these values to predict the clearances of CYP1A2 substrates in smokers. METHODS: Smoking-induced changes in hepatic CYP1A2 abundance were extrapolated from reported in vivo caffeine clearance data for sub-groups of a smoking population that were categorized according to their daily cigarette consumption. These abundance values together with in vitro-in vivo extrapolation (IVIVE) within the Simcyp population-based Simulator were used to predict the clearances of caffeine, theophylline, and clozapine in smokers. The model was used subsequently to predict differences in oral clearance between smoker and non-smoker cohorts in a Phase 1 clinical trial involving PF-2400013, a drug metabolized by CYP1A2. RESULTS: Estimated hepatic CYP1A2 abundance values were 52, 64, 79, 90, and 94 pmol/mg microsomal protein for subjects smoking 0, 1-5, 6-10, 11-20, and >20 cigarettes/day respectively. Predicted -fold increases in oral clearance of caffeine, theophylline and clozapine in smokers relative to non-smokers were consistent with observed data. The validated model was able to recover the smoking-induced increase in oral clearance of PF-2400013; predicted and observed mean (CV%) values in male nonsmokers and smokers were 90 L/h (40%) and 141 L/h (34%) respectively, and 100 L/h (58%) and 131 L/h (33%) respectively. CONCLUSIONS: This study demonstrates that it may be possible to predict the clearance of CYP1A2 substrates in smoking populations using quantitative estimates of CYP1A2 abundance based on daily cigarette consumption in conjunction with an IVIVE approach.


Asunto(s)
Citocromo P-450 CYP1A2/biosíntesis , Agonistas del Receptor de Serotonina 5-HT2/farmacocinética , Fumar/metabolismo , Adolescente , Adulto , Cafeína/farmacocinética , Clozapina/farmacocinética , Simulación por Computador , Citocromo P-450 CYP1A2/metabolismo , Inducción Enzimática , Femenino , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Modelos Biológicos , Teofilina/farmacocinética , Adulto Joven
16.
CPT Pharmacometrics Syst Pharmacol ; 11(3): 373-383, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35174656

RESUMEN

There has been a significant increase in the use of physiologically based pharmacokinetic (PBPK) models during the past 20 years, especially for pediatrics. The aim of this study was to give a detailed overview of the growth and areas of application of pediatric PBPK (P-PBPK) models. A total of 181 publications and publicly available regulatory reviews were identified and categorized according to year, author affiliation, platform, and primary application of the P-PBPK model (in clinical settings, drug development or to advance pediatric model development in general). Secondary application areas, including dose selection, biologics, and drug interactions, were also assessed. The growth rate for P-PBPK modeling increased 33-fold between 2005 and 2020; this was mainly attributed to growth in clinical and drug development applications. For primary applications, 50% of articles were classified under clinical, 18% under drug development, and 33% under model development. The most common secondary applications were dose selection (75% drug development), pharmacokinetic prediction and covariate identification (47% clinical), and model parameter identification (68% model development), respectively. Although population PK modeling remains the mainstay of approaches supporting pediatric drug development, the data presented here demonstrate the widespread application of P-PBPK models in both drug development and clinical settings. Although applications for pharmacokinetic and drug-drug interaction predictions in pediatrics is advocated, this approach remains underused in areas such as assessment of pediatric formulations, toxicology, and trial design. The increasing number of publications supporting the development and refinement of the pediatric model parameters can only serve to enhance optimal use of P-PBPK models.


Asunto(s)
Modelos Biológicos , Pediatría , Niño , Simulación por Computador , Desarrollo de Medicamentos , Interacciones Farmacológicas , Humanos
17.
CPT Pharmacometrics Syst Pharmacol ; 11(7): 822-832, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445542

RESUMEN

Physiologically-based pharmacokinetic (PBPK) modeling is being increasingly used in drug development to avoid unnecessary clinical drug-drug interaction (DDI) studies and inform drug labels. Thus, regulatory agencies are recommending, or indeed requesting, more rigorous demonstration of the prediction accuracy of PBPK platforms in the area of their intended use. We describe a framework for qualification of the Simcyp Simulator with respect to competitive and mechanism-based inhibition (MBI) of CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5. Initially, a DDI matrix, consisting of a range of weak, moderate, and strong inhibitors and substrates with varying fraction metabolized by specific CYP enzymes that were susceptible to different degrees of inhibition, were identified. Simulations were run with 123 clinical DDI studies involving competitive inhibition and 78 clinical DDI studies involving MBI. For competitive inhibition, the overall prediction accuracy was good with an average fold error (AFE) of 0.91 and 0.92 for changes in the maximum plasma concentration (Cmax ) and area under the plasma concentration (AUC) time profile, respectively, as a consequence of the DDI. For MBI, an AFE of 1.03 was determined for both Cmax and AUC. The prediction accuracy was generally comparable across all CYP enzymes, irrespective of the isozyme and mechanism of inhibition. These findings provide confidence in application of the Simcyp Simulator (V19 R1) for assessment of the DDI potential of drugs in development either as inhibitors or victim drugs of CYP-mediated interactions. The approach described herein and the identified DDI matrix can be used to qualify subsequent versions of the platform.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Modelos Biológicos , Área Bajo la Curva , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos
18.
Br J Clin Pharmacol ; 71(1): 72-87, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21143503

RESUMEN

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: The prediction of drug-drug interactions (DDIs) from in vitro data usually utilizes an average dosing interval estimate of inhibitor concentration in an equation-based static model. Simcyp®, a population-based ADME simulator, is becoming widely used for the prediction of DDIs and has the ability to incorporate the time-course of inhibitor concentration and hence generate a temporal profile of the inhibition process within a dynamic model. WHAT THIS PAPER ADDS: Prediction of DDIs for 35 clinical studies incorporating a representative range of drug-drug interactions, with multiple studies across different inhibitors and victim drugs. Assessment of whether the inclusion of the time course of inhibition in the dynamic model improves prediction in comparison with the static model. Investigation of the impact of different inhibitor and victim drug parameters on DDI prediction accuracy including dosing time and the inclusion of active metabolites. Assessment of ability of the dynamic model to predict inter-individual variability in the DDI magnitude. AIMS: Static and dynamic models (incorporating the time course of the inhibitor) were assessed for their ability to predict drug-drug interactions (DDIs) using a population-based ADME simulator (Simcyp®V8). The impact of active metabolites, dosing time and the ability to predict inter-individual variability in DDI magnitude were investigated using the dynamic model. METHODS: Thirty-five in vivo DDIs involving azole inhibitors and benzodiazepines were predicted using the static and dynamic model; both models were employed within Simcyp for consistency in parameters. Simulations comprised of 10 trials with matching population demographics and dosage regimen to the in vivo studies. Predictive utility of the static and dynamic model was assessed relative to the inhibitor or victim drug investigated. RESULTS: Use of the dynamic and static models resulted in comparable prediction success, with 71 and 77% of DDIs predicted within two-fold, respectively. Over 40% of strong DDIs (>five-fold AUC increase) were under-predicted by both models. Incorporation of the itraconazole metabolite into the dynamic model resulted in increased prediction accuracy of strong DDIs (80% within two-fold). Bias and imprecision in prediction of triazolam DDIs were higher in comparison with midazolam and alprazolam; >50% of triazolam DDIs were under-predicted regardless of the model used. Predicted inter-individual variability in the AUC ratio (coefficient of variation of 45%) was consistent with the observed variability (50%). CONCLUSIONS: High prediction accuracy was observed using both the Simcyp dynamic and static models. The differences observed with the dose staggering and the incorporation of active metabolite highlight the importance of these variables in DDI prediction.


Asunto(s)
Azoles/antagonistas & inhibidores , Benzodiazepinas/antagonistas & inhibidores , Interacciones Farmacológicas , Algoritmos , Área Bajo la Curva , Azoles/administración & dosificación , Benzodiazepinas/administración & dosificación , Simulación por Computador , Humanos , Modelos Teóricos , Ensayos Clínicos Controlados Aleatorios como Asunto , Reproducibilidad de los Resultados
19.
Clin Pharmacokinet ; 60(5): 637-647, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33313995

RESUMEN

BACKGROUND: A combination of the antipsychotic olanzapine and opioid receptor antagonist samidorphan (OLZ/SAM) is in development for the treatment of patients with schizophrenia or bipolar I disorder. The effect of severe renal impairment on the pharmacokinetics of olanzapine and samidorphan after a single oral dose of OLZ/SAM was evaluated in a clinical study. Complementary to the clinical findings, physiologically based pharmacokinetic modeling was used to assess the effects of varying degrees of renal impairment on the pharmacokinetics of olanzapine and samidorphan. METHODS: A physiologically based pharmacokinetic model for OLZ/SAM was developed and validated by comparing model-simulated data with observed clinical data. The model was applied to predict changes in olanzapine and samidorphan pharmacokinetics after administration of OLZ/SAM in subjects with mild, moderate, and severe renal impairment relative to age-matched controls with normal renal function. RESULTS: The model predicted 1.5- and 2.2-fold increases in olanzapine and samidorphan area under the plasma concentration-time curve (AUC), respectively, after a single dose of OLZ/SAM in subjects with severe renal impairment vs controls, which was consistent with results from the clinical study. Application of the model prediction indicated increases in steady-state olanzapine AUC of 1.2-, 1.5-, and 1.6-fold, and samidorphan AUC of 1.4-, 1.8-, and 2.2-fold, in subjects with mild, moderate, and severe renal impairment, respectively, relative to healthy controls. CONCLUSIONS: Physiologically based pharmacokinetic modeling extended the findings from a clinical study in severe renal impairment to other untested clinical scenarios; these data could be of interest to clinicians treating patients with renal impairment.


Asunto(s)
Antipsicóticos , Naltrexona , Área Bajo la Curva , Humanos , Naltrexona/análogos & derivados , Antagonistas de Narcóticos , Olanzapina
20.
CPT Pharmacometrics Syst Pharmacol ; 10(9): 1071-1080, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34185436

RESUMEN

A combination of olanzapine and samidorphan (OLZ/SAM) was recently approved by the US Food and Drug Administration for treatment of patients with schizophrenia or bipolar I disorder. The effects of moderate hepatic impairment on the pharmacokinetics (PKs) of olanzapine and samidorphan after a single dose of OLZ/SAM were characterized in a clinical study. Physiologically-based pharmacokinetic (PBPK) modeling was used to extend the clinical findings to predict the effects of varying degrees of hepatic impairment on the PKs of olanzapine and samidorphan. A previously developed PBPK model for OLZ/SAM was refined to recover the observed pharmacokinetic differences between individuals with moderate hepatic impairment and healthy controls. The optimized model was applied to predict changes in olanzapine and samidorphan PKs after multiple once-daily doses of OLZ/SAM in subjects with mild, moderate, and severe hepatic impairment relative to healthy controls. Modifications to model parameters, including absorption rate constant and fraction unbound to plasma protein, were made to recover the observed change in the PKs of olanzapine and samidorphan in individuals with moderate hepatic impairment. In applying the optimized model, mild, moderate, and severe hepatic impairment were predicted to increase steady-state total systemic exposures by 1.1-, 1.5-, and 1.6-fold, respectively, for olanzapine, and by 1.2-, 1.9-, and 2.3-fold, respectively, for samidorphan. PBPK modeling allowed for prediction of untested clinical scenarios of varying degrees of hepatic impairment in lieu of additional clinical studies.


Asunto(s)
Hepatopatías/fisiopatología , Modelos Biológicos , Naltrexona/análogos & derivados , Olanzapina/administración & dosificación , Anciano , Antipsicóticos/administración & dosificación , Antipsicóticos/farmacocinética , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Naltrexona/administración & dosificación , Naltrexona/farmacocinética , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacocinética , Olanzapina/farmacocinética , Índice de Severidad de la Enfermedad , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA