Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 51(6): 1412-1422, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33576494

RESUMEN

Heterologous polyclonal antibodies might represent an alternative to the use of convalescent plasma or monoclonal antibodies (mAbs) in coronavirus disease (COVID-19) by targeting multiple antigen epitopes. However, heterologous antibodies trigger human natural xenogeneic antibody responses particularly directed against animal-type carbohydrates, mainly the N-glycolyl form of the neuraminic acid (Neu5Gc) and the α1,3-galactose, potentially leading to serum sickness or allergy. Here, we immunized cytidine monophosphate-N-acetylneuraminic acid hydroxylase and α1,3-galactosyl-transferase (GGTA1) double KO pigs with the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain to produce glyco-humanized polyclonal neutralizing antibodies lacking Neu5Gc and α1,3-galactose epitopes. Animals rapidly developed a hyperimmune response with anti-SARS-CoV-2 end-titers binding dilutions over one to a million and end-titers neutralizing dilutions of 1:10 000. The IgG fraction purified and formulated following clinical Good Manufacturing Practices, named XAV-19, neutralized spike/angiotensin converting enzyme-2 interaction at a concentration <1 µg/mL, and inhibited infection of human cells by SARS-CoV-2 in cytopathic assays. We also found that pig GH-pAb Fc domains fail to interact with human Fc receptors, thereby avoiding macrophage-dependent exacerbated inflammatory responses and a possible antibody-dependent enhancement. These data and the accumulating safety advantages of using GH-pAbs in humans warrant clinical assessment of XAV-19 against COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/terapia , SARS-CoV-2/inmunología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/farmacología , COVID-19/genética , Galactosiltransferasas/deficiencia , Galactosiltransferasas/inmunología , Células HEK293 , Humanos , Inmunización Pasiva , SARS-CoV-2/genética , Ácidos Siálicos/genética , Ácidos Siálicos/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Sueroterapia para COVID-19
2.
J Allergy Clin Immunol ; 141(2): 718-729.e7, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28729000

RESUMEN

BACKGROUND: Homeostatic turnover of the extracellular matrix conditions the structure and function of the healthy lung. In lung transplantation, long-term management remains limited by chronic lung allograft dysfunction, an umbrella term used for a heterogeneous entity ultimately associated with pathological airway and/or parenchyma remodeling. OBJECTIVE: This study assessed whether the local cross-talk between the pulmonary microbiota and host cells is a key determinant in the control of lower airway remodeling posttransplantation. METHODS: Microbiota DNA and host total RNA were isolated from 189 bronchoalveolar lavages obtained from 116 patients post lung transplantation. Expression of a set of 11 genes encoding either matrix components or factors involved in matrix synthesis or degradation (anabolic and catabolic remodeling, respectively) was quantified by real-time quantitative PCR. Microbiota composition was characterized using 16S ribosomal RNA gene sequencing and culture. RESULTS: We identified 4 host gene expression profiles, among which catabolic remodeling, associated with high expression of metallopeptidase-7, -9, and -12, diverged from anabolic remodeling linked to maximal thrombospondin and platelet-derived growth factor D expression. While catabolic remodeling aligned with a microbiota dominated by proinflammatory bacteria (eg, Staphylococcus, Pseudomonas, and Corynebacterium), anabolic remodeling was linked to typical members of the healthy steady state (eg, Prevotella, Streptococcus, and Veillonella). Mechanistic assays provided direct evidence that these bacteria can impact host macrophage-fibroblast activation and matrix deposition. CONCLUSIONS: Host-microbes interplay potentially determines remodeling activities in the transplanted lung, highlighting new therapeutic opportunities to ultimately improve long-term lung transplant outcome.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Bacterias , Trasplante de Pulmón , Pulmón , Microbiota/inmunología , Transducción de Señal/inmunología , Adulto , Bacterias/clasificación , Bacterias/inmunología , Matriz Extracelular/inmunología , Matriz Extracelular/patología , Femenino , Fibroblastos/inmunología , Fibroblastos/patología , Humanos , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Persona de Mediana Edad
3.
Cell Microbiol ; 17(7): 1008-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25600171

RESUMEN

Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6-family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46-expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross-linking and enzyme-linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose-dependent increase in DC death via caspase-dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection.


Asunto(s)
Apoptosis , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Histonas/metabolismo , Interacciones Huésped-Patógeno , Neisseria meningitidis/patogenicidad , Sistemas de Secreción Tipo V/metabolismo , Factores de Virulencia/metabolismo , Transporte Activo de Núcleo Celular , Animales , Supervivencia Celular , Células Cultivadas , Células Dendríticas/microbiología , Células Dendríticas/fisiología , Modelos Animales de Enfermedad , Humanos , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/patología , Ratones Transgénicos , Proteolisis , Análisis de Supervivencia
4.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38085594

RESUMEN

Heterologous polyclonal antibodies (pAb) were shown to possess oncolytic properties a century ago with reported clinical responses. More recent preclinical models confirmed pAb efficacy, though their ability to tackle complex target antigens reduces susceptibility to tumor escape. Owing to the recent availability of glyco-humanized pAb (GH-pAb) with acceptable clinical toxicology profile, we revisited use of pAb in oncology and highlighted their therapeutic potential against multiple cancer types. Murine antitumor pAb were generated after repeated immunization of rabbits with murine tumor cell lines from hepatocarcinoma, melanoma, and colorectal cancers. Antitumor pAb recognized and showed cytotoxicity against their targets without cross-reactivity with healthy tissues. In vivo, pAb are effective alone; moreover, these pAb synergize with immune checkpoint inhibitors like anti-PD-L1 in several cancer models. They elicited an antitumor host immune response and prevented metastases. The anticancer activity of pAb was also confirmed in xenografted NMRI nude mice using GH-pAb produced by repeated immunization of pigs with human tumor cell lines. In conclusion, the availability of bioengineered GH-pAb allows for revisiting of passive immunotherapy with oncolytic pAb to fight against solid tumor and cancer metastasis.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Conejos , Animales , Ratones , Porcinos , Ratones Desnudos , Inmunización , Melanoma/terapia , Línea Celular Tumoral , Anticuerpos Antineoplásicos/farmacología
5.
Front Immunol ; 15: 1330178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694503

RESUMEN

Introduction: XAV-19 is a glyco-humanized swine polyclonal antibody targeting SARS-CoV-2 with high neutralizing activity. The safety and clinical efficacy of XAV-19 were investigated in patients with mild to moderate COVID-19. Methods: This phase II/III, multicentric, randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the safety and clinical efficacy of XAV-19 in patients with a seven-point WHO score of 2 to 4 at randomization, i.e., inpatients with COVID-19 requiring or not requiring low-flow oxygen therapy, and outpatients not requiring oxygen (EUROXAV trial, NCT04928430). Adult patients presenting in specialized or emergency units with confirmed COVID-19 and giving their consent to participate in the study were randomized to receive 150 mg of XAV-19 or placebo. The primary endpoint was the proportion of patients with aggravation within 8 days after treatment, defined as a worsening of the seven-point WHO score of at least one point between day 8 and day 1 (inclusion). The neutralization activity of XAV-19 against variants circulating during the trial was tested in parallel. Results: From March 2021 to October 2022, 279 patients received either XAV-19 (N = 140) or placebo (N = 139). A slow enrollment and a low rate of events forced the termination of the premature trial. XAV-19 was well tolerated. Underpowered statistics did not allow the detection of any difference in the primary endpoint between the two groups or in stratified groups. Interestingly, analysis of the time to improvement (secondary endpoint) showed that XAV-19 significantly accelerated the recovery for patients with a WHO score of 2 or 3 (median at 7 days vs. 14 days, p = 0.0159), and even more for patients with a WHO score of 2 (4 days vs. 14 days, p = 0.0003). The neutralizing activity against Omicron and BA.2, BA.2.12.1, BA.4/5, and BQ.1.1 subvariants was shown. Discussion: In this randomized placebo- controlled trial with premature termination, reduction of aggravation by XAV-19 at day 8 in patients with COVID-19 was not detectable. However, a significant reduction of the time to improvement for patients not requiring oxygen was observed. XAV-19 maintained a neutralizing activity against SARS-CoV-2 variants. Altogether, these data support a possible therapeutic interest for patients with mild to moderate COVID-19 requiring anti-SARS-CoV-2 neutralizing antibodies. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT04928430; https://www.clinicaltrialsregister.eu/about.html (EudraCT), identifier 2020-005979-12.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Masculino , Femenino , Persona de Mediana Edad , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/terapia , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Método Doble Ciego , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Adulto , Resultado del Tratamiento , Índice de Severidad de la Enfermedad
6.
Transplantation ; 108(7): e139-e147, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421879

RESUMEN

BACKGROUND: Polyclonal rabbit antithymocyte globulins (ATGs) are commonly used in organ transplantation as induction. Anti- N -glycolylneuraminic acid carbohydrate antibodies which develop in response to rabbit carbohydrate antigens might lead to unwanted systemic inflammation. LIS1, the first new generation of antilymphocyte globulins (ALGs) derived from double knockout swine, lacking carbohydrate xenoantigens was already tested in nonhuman primates and rodent models. METHODS: This open-label, single-site, dose escalation, first-in-human, phase 1 study evaluated the safety, T cell depletion, pharmacokinetics, and pharmacodynamics of LIS1. In an ascending dose cohort (n = 5), a primary kidney transplant recipient at low immunologic risk (panel reactive antibody [PRA] < 20%), received LIS1 for 5 d at either 0.6, 1, 3, 6, or 8 mg/kg. After each patient completed treatment, the data safety monitoring board approved respective dose escalation. In the therapeutic dose cohort (n = 5) in patients with PRA <50% without donor specific antibodies, 2 patients received 8 mg/kg and 3 patients 10 mg/kg. RESULTS: CD3 + T cell depletion <100/mm 3 at day 2 was observed in all patients who received 6, 8, and 10 mg/kg of LIS1. The terminal half-life of LIS1 was 33.7 d with linearity in its disposition. Lymphocyte repopulation was fast and pretransplant lymphocyte subpopulation counts recovered within 2-4 wk. LIS1 was well tolerated, neither cytokine release syndrome nor severe thrombocytopenia or leukopenia were noticed. Antibodies to LIS1 were not detected. CONCLUSIONS: In this first-in-human trial, genome-edited swine-derived polyclonal LIS1 ALG was well tolerated, did not elicit antidrug antibodies, and caused time-limited T cell depletion in low- and medium-risk kidney transplant recipients.


Asunto(s)
Suero Antilinfocítico , Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Humanos , Animales , Suero Antilinfocítico/inmunología , Masculino , Persona de Mediana Edad , Porcinos , Femenino , Adulto , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Depleción Linfocítica/métodos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Resultado del Tratamiento , Galactosiltransferasas
7.
Transplantation ; 108(7): e139-e147, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985979

RESUMEN

BACKGROUND: Polyclonal rabbit antithymocyte globulins (ATGs) are commonly used in organ transplantation as induction. Anti- N -glycolylneuraminic acid carbohydrate antibodies which develop in response to rabbit carbohydrate antigens might lead to unwanted systemic inflammation. LIS1, the first new generation of antilymphocyte globulins (ALGs) derived from double knockout swine, lacking carbohydrate xenoantigens was already tested in nonhuman primates and rodent models. METHODS: This open-label, single-site, dose escalation, first-in-human, phase 1 study evaluated the safety, T cell depletion, pharmacokinetics, and pharmacodynamics of LIS1. In an ascending dose cohort (n = 5), a primary kidney transplant recipient at low immunologic risk (panel reactive antibody [PRA] < 20%), received LIS1 for 5 d at either 0.6, 1, 3, 6, or 8 mg/kg. After each patient completed treatment, the data safety monitoring board approved respective dose escalation. In the therapeutic dose cohort (n = 5) in patients with PRA <50% without donor specific antibodies, 2 patients received 8 mg/kg and 3 patients 10 mg/kg. RESULTS: CD3 + T cell depletion <100/mm 3 at day 2 was observed in all patients who received 6, 8, and 10 mg/kg of LIS1. The terminal half-life of LIS1 was 33.7 d with linearity in its disposition. Lymphocyte repopulation was fast and pretransplant lymphocyte subpopulation counts recovered within 2-4 wk. LIS1 was well tolerated, neither cytokine release syndrome nor severe thrombocytopenia or leukopenia were noticed. Antibodies to LIS1 were not detected. CONCLUSIONS: In this first-in-human trial, genome-edited swine-derived polyclonal LIS1 ALG was well tolerated, did not elicit antidrug antibodies, and caused time-limited T cell depletion in low- and medium-risk kidney transplant recipients.


Asunto(s)
Suero Antilinfocítico , Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Humanos , Animales , Suero Antilinfocítico/inmunología , Masculino , Persona de Mediana Edad , Porcinos , Femenino , Adulto , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Depleción Linfocítica/métodos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Resultado del Tratamiento , Galactosiltransferasas
8.
J Biol Chem ; 287(8): 5756-63, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22205703

RESUMEN

Dendritic cells (DCs) have been shown to play a key role in the initiation and maintenance of immune responses to microbial pathogens as well as to allergens, but the exact mechanisms of their involvement in allergic responses and Th2 cell differentiation have remained elusive. Using retagging, we identified DC-SIGN as a novel receptor involved in the initial recognition and uptake of the major house dust mite and dog allergens Der p 1 and Can f 1, respectively. To confirm this, we used gene silencing to specifically inhibit DC-SIGN expression by DCs followed by allergen uptake studies. Binding and uptake of Der p 1 and Can f 1 allergens was assessed by ELISA and flow cytometry. Intriguingly, our data showed that silencing DC-SIGN on DCs promotes a Th2 phenotype in DC/T cell co-cultures. These findings should lead to better understanding of the molecular basis of allergen-induced Th2 cell polarization and in doing so paves the way for the rational design of novel intervention strategies by targeting allergen receptors on innate immune cells or their carbohydrate counterstructures on allergens.


Asunto(s)
Antígenos CD/metabolismo , Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Pyroglyphidae/inmunología , Receptores de Superficie Celular/metabolismo , Alérgenos/inmunología , Alérgenos/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/inmunología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/farmacología , Técnicas de Cocultivo , Cisteína Endopeptidasas/inmunología , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Perros , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Humanos , Lectinas Tipo C/química , Ratones , Células 3T3 NIH , Unión Proteica , Receptores de Superficie Celular/química , Solubilidad , Coloración y Etiquetado , Células Th2/citología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/metabolismo
9.
Infect Immun ; 81(11): 4299-310, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24002066

RESUMEN

We have investigated the response of primary human meningothelial cells to Neisseria meningitidis. Through a transcriptome analysis, we provide a comprehensive examination of the response of meningothelial cells to bacterial infection. A wide range of chemokines are elicited which act to attract and activate the main players of innate and adaptive immunity. We showed that meningothelial cells expressed a high level of Toll-like receptor 4 (TLR4), and, using a gene silencing strategy, we demonstrated the contribution of this pathogen recognition receptor in meningothelial cell activation. Secretion of interleukin-6 (IL-6), CXCL10, and CCL5 was almost exclusively TLR4 dependent and relied on MyD88 and TRIF adaptor cooperation. In contrast, IL-8 induction was independent of the presence of TLR4, MyD88, and TRIF. Transcription factors NF-κB p65, p38 mitogen-activated protein kinase (MAPK), Jun N-terminal protein kinase (JNK1), IRF3, and IRF7 were activated after contact with bacteria. Interestingly, the protein kinase IRAK4 was found to play a minor role in the meningothelial cell response to Neisseria infection. Our work highlights the role of meningothelial cells in the development of an immune response and inflammation in the central nervous system (CNS) in response to meningococcal infection. It also sheds light on the complexity of intracellular signaling after TLR triggering.


Asunto(s)
Células Epiteliales/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Meninges/inmunología , Neisseria meningitidis/inmunología , Células Cultivadas , Citocinas/biosíntesis , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Transducción de Señal
10.
Front Immunol ; 14: 1137629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875084

RESUMEN

Anti-thymocyte or anti-lymphocyte globulins (ATGs/ALGs) are immunosuppressive drugs used in induction therapies to prevent acute rejection in solid organ transplantation. Because animal-derived, ATGs/ALGs contain highly immunogenic carbohydrate xenoantigens eliciting antibodies that are associated with subclinical inflammatory events, possibly impacting long-term graft survival. Their strong and long-lasting lymphodepleting activity also increases the risk for infections. We investigated here the in vitro and in vivo activity of LIS1, a glyco-humanized ALG (GH-ALG) produced in pigs knocked out for the two major xeno-antigens αGal and Neu5Gc. It differs from other ATGs/ALGs by its mechanism of action excluding antibody-dependent cell-mediated cytotoxicity and being restricted to complement-mediated cytotoxicity, phagocyte-mediated cytotoxicity, apoptosis and antigen masking, resulting in profound inhibition of T-cell alloreactivity in mixed leucocyte reactions. Preclinical evaluation in non-human primates showed that GH-ALG dramatically reduced CD4+ (p=0.0005,***), CD8+ effector T cells (p=0.0002,***) or myeloid cells (p=0.0007,***) but not T-reg (p=0.65, ns) or B cells (p=0.65, ns). Compared with rabbit ATG, GH-ALG induced transient depletion (less than one week) of target T cells in the peripheral blood (<100 lymphocytes/L) but was equivalent in preventing allograft rejection in a skin allograft model. The novel therapeutic modality of GH-ALG might present advantages in induction treatment during organ transplantation by shortening the T-cell depletion period while maintaining adequate immunosuppression and reducing immunogenicity.


Asunto(s)
Globulinas , Trasplante de Órganos , Conejos , Animales , Porcinos , Linfocitos , Trasplante Homólogo , Linfocitos B
12.
Front Med (Lausanne) ; 10: 1126697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968829

RESUMEN

Background: Chronic lung allograft dysfunction (CLAD) is the leading cause of poor long-term survival after lung transplantation (LT). Systems prediction of Chronic Lung Allograft Dysfunction (SysCLAD) aimed to predict CLAD. Methods: To predict CLAD, we investigated the clinicome of patients with LT; the exposome through assessment of airway microbiota in bronchoalveolar lavage cells and air pollution studies; the immunome with works on activation of dendritic cells, the role of T cells to promote the secretion of matrix metalloproteinase-9, and subpopulations of T and B cells; genome polymorphisms; blood transcriptome; plasma proteome studies and assessment of MSK1 expression. Results: Clinicome: the best multivariate logistic regression analysis model for early-onset CLAD in 422 LT eligible patients generated a ROC curve with an area under the curve of 0.77. Exposome: chronic exposure to air pollutants appears deleterious on lung function levels in LT recipients (LTRs), might be modified by macrolides, and increases mortality. Our findings established a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Immunome: a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and associated with a higher level of interleukin 17A; Immune cells support airway remodeling through the production of plasma MMP-9 levels, a potential predictive biomarker of CLAD. Blood CD9-expressing B cells appear to favor the maintenance of long-term stable graft function and are a potential new predictive biomarker of BOS-free survival. An early increase of blood CD4 + CD57 + ILT2+ T cells after LT may be associated with CLAD onset. Genome: Donor Club cell secretory protein G38A polymorphism is associated with a decreased risk of severe primary graft dysfunction after LT. Transcriptome: blood POU class 2 associating factor 1, T-cell leukemia/lymphoma domain, and B cell lymphocytes, were validated as predictive biomarkers of CLAD phenotypes more than 6 months before diagnosis. Proteome: blood A2MG is an independent predictor of CLAD, and MSK1 kinase overexpression is either a marker or a potential therapeutic target in CLAD. Conclusion: Systems prediction of Chronic Lung Allograft Dysfunction generated multiple fingerprints that enabled the development of predictors of CLAD. These results open the way to the integration of these fingerprints into a predictive handprint.

13.
J Biol Chem ; 286(15): 13033-40, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21335554

RESUMEN

Dendritic cells are professional antigen-presenting cells that are specialized in antigen uptake and presentation. Allergy to cat has increased substantially in recent years and has been shown to be positively associated with asthma. We have recently shown that the mannose receptor (MR), a C-type lectin expressed by dendritic cells, recognizes various glycoallergens from diverse sources and is involved in promoting allergic responses to a major house dust mite allergen in vitro. Here we investigated the potential role of MR in allergic responses to Fel d 1, a major cat allergen. Fel d 1 binding to MR was confirmed by ELISA. Using blocking, gene silencing (siRNA) experiments, and MR knock-out (MR(-/-)) cells, we have demonstrated that MR plays a major role in internalization of Fel d 1 by human and mouse antigen-presenting cells. Intriguingly, unlike other glycoallergens, recognition of Fel d 1 by MR is mediated by the cysteine-rich domain, which correlates with the presence of sulfated carbohydrates in natural Fel d 1. WT and MR(-/-) mice were used to study the role of MR in allergic sensitization to Fel d 1 in vivo. MR(-/-) mice sensitized with cat dander extract and Fel d 1 produced significantly lower levels of total IgE, Fel d 1-specific-IgE and IgG1, the hallmarks of allergic response, compared with WT mice. Our data show for the first time that Fel d 1 is a novel ligand of the cysteine-rich domain of MR and that MR is likely to play a pivotal role in allergic sensitization to airborne allergens in vivo.


Asunto(s)
Asma/inmunología , Células Dendríticas/inmunología , Glicoproteínas/inmunología , Lectinas Tipo C/inmunología , Lectinas de Unión a Manosa/inmunología , Receptores de Superficie Celular/inmunología , Animales , Especificidad de Anticuerpos/inmunología , Asma/genética , Asma/metabolismo , Gatos , Células Dendríticas/metabolismo , Silenciador del Gen , Glicoproteínas/metabolismo , Glicoproteínas/farmacología , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
14.
J Immunol ; 185(3): 1522-31, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20610655

RESUMEN

The mannose receptor (MR) is a C-type lectin expressed by dendritic cells (DCs). We have investigated the ability of MR to recognize glycosylated allergens. Using a gene silencing strategy, we have specifically inhibited the expression of MR on human monocyte-derived DCs. We show that MR mediates internalization of diverse allergens from mite (Der p 1 and Der p 2), dog (Can f 1), cockroach (Bla g 2), and peanut (Ara h 1) through their carbohydrate moieties. All of these allergens bind to the C-type lectin-like carbohydrate recognition domains 4-7 of MR. We have also assessed the contribution of MR to T cell polarization after allergen exposure. We show that silencing MR expression on monocyte-derived DCs reverses the Th2 cell polarization bias, driven by Der p 1 allergen exposure, through upregulation of IDO activity. In conclusion, our work demonstrates a major role for MR in glycoallergen recognition and in the development of Th2 responses.


Asunto(s)
Alérgenos/fisiología , Antígenos Dermatofagoides/inmunología , Polaridad Celular/inmunología , Células Dendríticas/enzimología , Células Dendríticas/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Lectinas Tipo C/fisiología , Lectinas de Unión a Manosa/fisiología , Receptores de Superficie Celular/fisiología , Células Th2/inmunología , Adulto , Alérgenos/metabolismo , Animales , Antígenos Dermatofagoides/metabolismo , Proteínas de Artrópodos , Técnicas de Cocultivo , Cisteína Endopeptidasas , Células Dendríticas/metabolismo , Femenino , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/terapia , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Lectinas Tipo C/antagonistas & inhibidores , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/antagonistas & inhibidores , Lectinas de Unión a Manosa/metabolismo , Unión Proteica/inmunología , Pyroglyphidae/inmunología , Pyroglyphidae/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Células Th2/enzimología , Regulación hacia Arriba/inmunología
15.
Biol Res ; 45(1): 33-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688982

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.


Asunto(s)
Antígenos CD4/análisis , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Memoria Inmunológica/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Células Cultivadas , Células Dendríticas/citología , Humanos , Inmunofenotipificación , Inmunoterapia , Interferón gamma/inmunología , Activación de Linfocitos , Factor de Necrosis Tumoral alfa/inmunología
16.
J Immunol ; 182(4): 1877-84, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19201840

RESUMEN

Heme oxygenase-1 (HO-1) exerts its functions via the catabolism of heme into carbon monoxide (CO), Fe(2+), and biliverdin, as well as by depletion of free heme. We have recently described that overexpression of HO-1 is associated with the tolerogenic capacity to dendritic cells (DCs) stimulated by LPS. In this study, we demonstrate that treatment of human monocyte-derived DCs with CO blocks TLR3 and 4-induced phenotypic maturation, secretion of proinflammatory cytokines, and alloreactive T cell proliferation, while preserving IL-10 production. Treatment of DCs with biliverdin, bilirubin, and deferoxamine or replenishing intracellular heme stores had no effect on DC maturation. HO-1 and CO inhibited LPS-induced activation of the IFN regulatory factor 3 pathway and their effects were independent of p38, ERK, and JNK MAPK. HO-1 and CO treatment also inhibited mouse DC maturation in vitro and mouse DC immunogenic properties in vivo, as shown by adoptive cell transfer in a transgenic model of induced diabetes. Thus, for the first time, our data show that CO treatment inhibits DC immunogenicity induced by TLR ligands and that blockade of IFN regulatory factor 3 is associated with this effect.


Asunto(s)
Monóxido de Carbono/metabolismo , Células Dendríticas/inmunología , Factor 3 Regulador del Interferón/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Animales , Western Blotting , Diferenciación Celular/inmunología , Células Dendríticas/citología , Citometría de Flujo , Hemo-Oxigenasa 1/inmunología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Transgénicos , Receptores Toll-Like/metabolismo
17.
Front Immunol ; 12: 761250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868003

RESUMEN

Amino acid substitutions and deletions in the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can reduce the effectiveness of monoclonal antibodies (mAbs). In contrast, heterologous polyclonal antibodies raised against S protein, through the recognition of multiple target epitopes, have the potential to maintain neutralization capacities. XAV-19 is a swine glyco-humanized polyclonal neutralizing antibody raised against the receptor binding domain (RBD) of the Wuhan-Hu-1 Spike protein of SARS-CoV-2. XAV-19 target epitopes were found distributed all over the RBD and particularly cover the receptor binding motives (RBMs), in direct contact sites with the angiotensin converting enzyme-2 (ACE-2). Therefore, in Spike/ACE-2 interaction assays, XAV-19 showed potent neutralization capacities of the original Wuhan Spike and of the United Kingdom (Alpha/B.1.1.7) and South African (Beta/B.1.351) variants. These results were confirmed by cytopathogenic assays using Vero E6 and live virus variants including the Brazil (Gamma/P.1) and the Indian (Delta/B.1.617.2) variants. In a selective pressure study on Vero E6 cells conducted over 1 month, no mutation was associated with the addition of increasing doses of XAV-19. The potential to reduce viral load in lungs was confirmed in a human ACE-2 transduced mouse model. XAV-19 is currently evaluated in patients hospitalized for COVID-19-induced moderate pneumonia in phase 2a-2b (NCT04453384) where safety was already demonstrated and in an ongoing 2/3 trial (NCT04928430) to evaluate the efficacy and safety of XAV-19 in patients with moderate-to-severe COVID-19. Owing to its polyclonal nature and its glyco-humanization, XAV-19 may provide a novel safe and effective therapeutic tool to mitigate the severity of coronavirus disease 2019 (COVID-19) including the different variants of concern identified so far.


Asunto(s)
Anticuerpos Heterófilos/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Heterófilos/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Variación Antigénica , Anticuerpos ampliamente neutralizantes/uso terapéutico , COVID-19/terapia , COVID-19/virología , Modelos Animales de Enfermedad , Epítopos , Humanos , Inmunización Pasiva , Pulmón/efectos de los fármacos , Pulmón/virología , Ratones , Dominios y Motivos de Interacción de Proteínas , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Carga Viral/efectos de los fármacos , Sueroterapia para COVID-19
18.
J Inflamm Res ; 13: 1021-1028, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33299339

RESUMEN

Cumulating reports suggest that acute phase proteins (APPs) have diagnostic and prognostic value in different clinical conditions. Among others, APPs are proposed to serve as markers that help to control the outcome of transplant recipients. Here, we questioned whether plasma concentrations of APPs mirror the development of chronic lung allograft dysfunction (CLAD). We performed blinded analysis of serial plasma samples retrospectively collected from 35 lung transplanted patients, of whom 25 developed CLAD and 10 remained stable during the follow-up period of 3 to 4.5 years. Albumin (ALB), alpha1-antitrypsin (AAT), high sensitivity C-reactive protein (CRPH), antithrombin-3 (AT3), ceruloplasmin (CER), and alpha2-macroglobulin (A2MG) were measured by the nephelometric method. We found that within the first six months post-transplantation, levels of A2MG, CER and AAT were higher in stable patients relative to those who later developed CLAD. Moreover, in stable patient's plasma CRPH levels decreased during the follow-up period whereas opposite, in those developing CLAD, the CRPH gradually increased. The ALB levels became significantly lower at the end of the follow-up period in CLAD relative to a stable group. A logistic regression model based on A2MG, CER and AT3 at cut-offs levels of ≥175.5 mg/dL, ≥37.8 mg/dL and ≥27.35 mg/dL enabled to discriminate between stable and CLAD patients with a sensitivity of 87.5%, 100% and 62.5%, and specificity of 65.9%, 72.7% and 79.5%, respectively. We identified A2MG (below 175.5 mg/dL) as an independent predictor of CLAD (hazard ratio 11.5, 95% CI (1.5-91.3), p<0.021). Our findings suggest that profiles of certain APPs may help to predict the development of lung dysfunction at the very early stages after transplantation.

19.
Transplantation ; 104(4): 715-723, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31764762

RESUMEN

BACKGROUND: Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. METHODS: We generated immunodeficient Rat Rag-/- Gamma chain-/- human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. RESULTS: RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. CONCLUSIONS: hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.


Asunto(s)
Antígenos de Diferenciación/inmunología , Proteínas de Homeodominio/inmunología , Huésped Inmunocomprometido , Cadenas gamma de Inmunoglobulina/inmunología , Síndromes de Inmunodeficiencia/inmunología , Leucocitos Mononucleares/trasplante , Receptores Inmunológicos/inmunología , Animales , Antígenos de Diferenciación/genética , Suero Antilinfocítico/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Xenoinjertos , Proteínas de Homeodominio/genética , Humanos , Cadenas gamma de Inmunoglobulina/genética , Síndromes de Inmunodeficiencia/genética , Leucocitos Mononucleares/inmunología , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores Inmunológicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Thorac Oncol ; 15(5): 827-842, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945495

RESUMEN

INTRODUCTION: Oncolytic immunotherapy is based on the use of nonpathogenic replicative oncolytic viruses that infect and kill tumor cells exclusively. Recently, we found that the spontaneous oncolytic activity of the Schwarz strain of measles virus (MV) against human malignant pleural mesothelioma (MPM) depends on defects in the antiviral type I interferon (IFN-I) response in tumor cells. METHODS: In this study, we studied three independent human MPM bio-collections to identify the defects in the IFN-I responses in tumor cells. RESULTS: We show that the most frequent defect is the homozygous deletions (HDs) of all the 14 IFN-I genes (IFN-α and IFN-ß) that we found in more than half of MV-sensitive MPM cell lines. These HDs occur together with the HDs of the tumor suppressor gene CDKN2A also located in the 9p21.3 chromosome region. Therefore, the IFN-I-/- MPM cell lines develop a partial and weak IFN-I response when they are exposed to the virus compared with that of normal cells and MV-resistant MPM cell lines. This response consists of the expression of a restricted number of IFN-stimulated genes that do not depend on the presence of IFN-I. In addition, the IFN-I-/- MPM cell lines infected by MV also develop a pro-inflammatory response associated with stress of the endoplasmic reticulum. CONCLUSION: Our study emphasizes the link between HDs of IFN-I encoding genes and the CDKN2A gene in MPM and sensitivity to MV oncolytic immunotherapy.


Asunto(s)
Interferón Tipo I , Neoplasias Pulmonares , Mesotelioma , Viroterapia Oncolítica , Virus Oncolíticos , Línea Celular Tumoral , Homocigoto , Humanos , Interferón Tipo I/genética , Virus del Sarampión/genética , Mesotelioma/genética , Mesotelioma/terapia , Virus Oncolíticos/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA