Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Genet ; 14(3): e1007029, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29561844

RESUMEN

Anaphase onset is an irreversible cell cycle transition that is triggered by the activation of the protease Separase. Separase cleaves the Mcd1 (also known as Scc1) subunit of Cohesin, a complex of proteins that physically links sister chromatids, triggering sister chromatid separation. Separase is regulated by the degradation of the anaphase inhibitor Securin which liberates Separase from inhibitory Securin/Separase complexes. In many organisms, Securin is not essential suggesting that Separase is regulated by additional mechanisms. In this work, we show that in budding yeast Cdk1 activates Separase (Esp1 in yeast) through phosphorylation to trigger anaphase onset. Esp1 activation is opposed by protein phosphatase 2A associated with its regulatory subunit Cdc55 (PP2ACdc55) and the spindle protein Slk19. Premature anaphase spindle elongation occurs when Securin (Pds1 in yeast) is inducibly degraded in cells that also contain phospho-mimetic mutations in ESP1, or deletion of CDC55 or SLK19. This striking phenotype is accompanied by advanced degradation of Mcd1, disruption of pericentric Cohesin organization and chromosome mis-segregation. Our findings suggest that PP2ACdc55 and Slk19 function redundantly with Pds1 to inhibit Esp1 within pericentric chromatin, and both Pds1 degradation and Cdk1-dependent phosphorylation of Esp1 act together to trigger anaphase onset.


Asunto(s)
Anafase/fisiología , Proteína Quinasa CDC2/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separasa/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Mutación , Fosforilación , Proteína Fosfatasa 2/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Securina/genética , Securina/metabolismo , Separasa/genética , Huso Acromático/genética , Cohesinas
2.
PLoS Genet ; 11(11): e1005425, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26587833

RESUMEN

Changes in the locations and boundaries of heterochromatin are critical during development, and de novo assembly of silent chromatin in budding yeast is a well-studied model for how new sites of heterochromatin assemble. De novo assembly cannot occur in the G1 phase of the cell cycle and one to two divisions are needed for complete silent chromatin assembly and transcriptional repression. Mutation of DOT1, the histone H3 lysine 79 (K79) methyltransferase, and SET1, the histone H3 lysine 4 (K4) methyltransferase, speed de novo assembly. These observations have led to the model that regulated demethylation of histones may be a mechanism for how cells control the establishment of heterochromatin. We find that the abundance of Sir4, a protein required for the assembly of silent chromatin, decreases dramatically during a G1 arrest and therefore tested if changing the levels of Sir4 would also alter the speed of de novo establishment. Halving the level of Sir4 slows heterochromatin establishment, while increasing Sir4 speeds establishment. yku70Δ and ubp10Δ cells also speed de novo assembly, and like dot1Δ cells have defects in subtelomeric silencing, suggesting that these mutants may indirectly speed de novo establishment by liberating Sir4 from telomeres. Deleting RIF1 and RIF2, which suppresses the subtelomeric silencing defects in these mutants, rescues the advanced de novo establishment in yku70Δ and ubp10Δ cells, but not in dot1Δ cells, suggesting that YKU70 and UBP10 regulate Sir4 availability by modulating subtelomeric silencing, while DOT1 functions directly to regulate establishment. Our data support a model whereby the demethylation of histone H3 K79 and changes in Sir4 abundance and availability define two rate-limiting steps that regulate de novo assembly of heterochromatin.


Asunto(s)
Silenciador del Gen , Heterocromatina/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/fisiología , Proteínas de Unión al ADN/genética , Epistasis Genética , Fase G1 , Eliminación de Gen , Mutación , Proteínas Nucleares/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Telómero , Proteínas de Unión a Telómeros/genética , Ubiquitina Tiolesterasa/genética
3.
Blood ; 124(18): 2867-71, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25193871

RESUMEN

Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy.


Asunto(s)
Anemia Sideroblástica/congénito , Anemia Sideroblástica/genética , Discapacidades del Desarrollo/complicaciones , Fiebre/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Síndromes de Inmunodeficiencia/complicaciones , Mutación/genética , ARN Nucleotidiltransferasas/genética , Alelos , Anemia Sideroblástica/complicaciones , Anemia Sideroblástica/enzimología , Discapacidades del Desarrollo/genética , Fiebre/genética , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Células HEK293 , Humanos , Síndromes de Inmunodeficiencia/genética
4.
Exp Cell Res ; 330(2): 248-266, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25445790

RESUMEN

In cell culture, many adherent mammalian cells undergo substantial actin cytoskeleton rearrangement prior to mitosis as they detach from the extracellular matrix and become spherical. At the end of mitosis, the actin cytoskeleton is required for cytokinesis and the reassembly of interphase structures as cells spread and reattach to substrate. To understand the processes regulating mitotic cytoskeletal remodeling, we studied how mitotic phosphorylation regulates filamin A (FLNa). FLNa is an actin-crosslinking protein that was previously identified as a cyclin-dependent kinase 1 (Cdk1) binding partner and substrate in vitro. Using quantitative label-based mass spectrometry, we find that FLNa serines 1084, 1459 and 1533 are phosphorylated in mitotic HeLa cells and all three sites match the phosphorylation consensus sequence of Cdk1. To investigate the functional role of mitotic FLNa phosphorylation, we mutated serines 1084, 1459 and 1533 to nonphosphorylatable alanine residues and expressed GFP-tagged FLNa(S1084A,S1459A,S1533A) (FLNa-AAA GFP) in a FLNa-deficient human melanoma cell line called M2. M2 cells expressing FLNa-AAA GFP have enhanced FLNa-AAA GFP and actin localization at sites of contact between daughter cells, impaired post-mitotic daughter cell separation and defects in cell migration. Therefore, mitotic phosphorylation of FLNa is important for successful cell division and interphase cell behavior.


Asunto(s)
Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Filaminas/metabolismo , Mitosis/fisiología , Citoesqueleto de Actina/fisiología , Actinas/metabolismo , Proteína Quinasa CDC2 , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Citocinesis/fisiología , Filaminas/genética , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Melanoma , Mutación , Fosforilación , Seudópodos/fisiología
5.
J Biol Chem ; 289(19): 13186-96, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24648511

RESUMEN

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Proteínas F-Box/metabolismo , Genoma Fúngico/fisiología , Histona Desacetilasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Acetilación , Proteínas de Ciclo Celular/genética , Estabilidad de Enzimas/fisiología , Proteínas F-Box/genética , Histona Desacetilasas/genética , Histonas/genética , Histonas/metabolismo , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética
6.
Microbiol Resour Announc ; 10(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479002

RESUMEN

We characterized the complete genome sequence of Siphoviridae bacteriophage Erla, an obligatory lytic subcluster EA1 bacteriophage infecting Microbacterium foliorum NRRL B-24224, with a capsid width of 65 nm and a tail length of 112 nm. The 41.5-kb genome, encompassing 62 predicted protein-coding genes, is highly similar (99.52% identity) to that of bacteriophage Calix.

7.
Mol Cell Biol ; 25(11): 4514-28, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15899856

RESUMEN

Budding yeast silent chromatin, or heterochromatin, is composed of histones and the Sir2, Sir3, and Sir4 proteins. Their assembly into silent chromatin is believed to require the deacetylation of histones by the NAD-dependent deacetylase Sir2 and the subsequent interaction of Sir3 and Sir4 with these hypoacetylated regions of chromatin. Here we explore the role of interactions among the Sir proteins in the assembly of the SIR complex and the formation of silent chromatin. We show that significant fractions of Sir2, Sir3, and Sir4 are associated together in a stable complex. When the assembly of Sir3 into this complex is disrupted by a specific mutation on the surface of the C-terminal coiled-coil domain of Sir4, Sir3 is no longer recruited to chromatin and silencing is disrupted. Because in sir4 mutant cells the association of Sir3 with chromatin is greatly reduced despite the partial Sir2-dependent deacetylation of histones near silencers, we conclude that histone deacetylation is not sufficient for the full recruitment of silencing proteins to chromatin and that Sir-Sir interactions are essential for the assembly of heterochromatin.


Asunto(s)
Silenciador del Gen , Heterocromatina/metabolismo , Histona Desacetilasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Acetilación , Histonas/metabolismo , Mutación , Saccharomyces cerevisiae/metabolismo , Elementos Silenciadores Transcripcionales , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2
8.
Mol Cell Biol ; 22(12): 4167-80, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12024030

RESUMEN

Transcriptional silencing at the budding yeast silent mating type (HM) loci and telomeric DNA regions requires Sir2, a conserved NAD-dependent histone deacetylase, Sir3, Sir4, histones H3 and H4, and several DNA-binding proteins. Silencing at the yeast ribosomal DNA (rDNA) repeats requires a complex containing Sir2, Net1, and Cdc14. Here we show that the native Sir2/Sir4 complex is composed solely of Sir2 and Sir4 and that native Sir3 is not associated with other proteins. We further show that the initial binding of the Sir2/Sir4 complex to DNA sites that nucleate silencing, accompanied by partial Sir2-dependent histone deacetylation, occurs independently of Sir3 and is likely to be the first step in assembly of silent chromatin at the HM loci and telomeres. The enzymatic activity of Sir2 is not required for this initial binding, but is required for the association of silencing proteins with regions distal from nucleation sites. At the rDNA repeats, we show that histone H3 and H4 tails are required for silencing and rDNA-associated H4 is hypoacetylated in a Sir2-dependent manner. However, the binding of Sir2 to rDNA is independent of its histone deacetylase activity. Together, these results support a stepwise model for the assembly of silent chromatin domains in Saccharomyces cerevisiae.


Asunto(s)
Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae , Transactivadores/metabolismo , Levaduras/genética , Acetilación , Cromatina/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Histona Desacetilasas/genética , Histonas/metabolismo , Sirtuina 2 , Sirtuinas , Transactivadores/genética , Transactivadores/aislamiento & purificación , Levaduras/metabolismo
9.
Sci Rep ; 6: 27697, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27323850

RESUMEN

Conditional gene expression systems that enable inducible and reversible transcriptional control are essential research tools and have broad applications in biomedicine and biotechnology. The reverse tetracycline transcriptional activator is a canonical system for engineered gene expression control that enables graded and gratuitous modulation of target gene transcription in eukaryotes from yeast to human cell lines and transgenic animals. However, the system has a tendency to activate transcription even in the absence of tetracycline and this leaky target gene expression impedes its use. Here, we identify single amino-acid substitutions that greatly enhance the dynamic range of the system in yeast by reducing leaky transcription to undetectable levels while retaining high expression capacity in the presence of inducer. While the mutations increase the inducer concentration required for full induction, additional sensitivity-enhancing mutations can compensate for this effect and confer a high degree of robustness to the system. The novel transactivator variants will be useful in applications where tight and tunable regulation of gene expression is paramount.


Asunto(s)
Biotecnología/métodos , Tetraciclina/metabolismo , Transactivadores/genética , Activación Transcripcional/genética , Sustitución de Aminoácidos/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Tetraciclina/farmacología , Transactivadores/metabolismo , Transactivadores/farmacología , Activación Transcripcional/efectos de los fármacos , Levaduras/genética
10.
Genetics ; 202(3): 903-10, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26715668

RESUMEN

Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2A(Rts1) either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Tirosina/química , Proteína Quinasa CDC2/genética , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ras-GRF1/genética , ras-GRF1/metabolismo
11.
Novartis Found Symp ; 259: 48-56; discussion 56-62, 163-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15171246

RESUMEN

Gene silencing involves the assembly of DNA into specialized chromatin domains that are inaccessible to trans-acting factors and are epigenetically inherited. In the budding yeast Saccharomyces cerevisiae, silent heterochromatic DNA domains occur at telomeres, the silent mating type loci, and the rDNA repeats. At telomeres and the mating type loci, silencing requires the Sir2, Sir3 and Sir4 proteins, the conserved N-termini of histones H3 and H4, and a number of chromatin assembly factors. The Sir proteins form a multimeric complex that binds preferentially to deacetylated nucleosomes through the Sir3 and Sir4 subunits. The Sir2 subunit possesses an unusual NAD-dependent deacetylase activity that is required for silencing at each of the above loci. Recent studies have shown that silent chromatin domains are assembled in a step-wise manner involving sequential cycles of deacetylation and SIR complex binding. Sir2-dependent deacetylation is specifically required for the spreading of the complex to regions beyond nucleation sites but not for its initial binding to DNA at the mating type loci and telomeres. A distinct Sir2 complex called RENT is required for silencing at rDNA. In contrast to telomeres and the mating type loci, Sir2 activity is not required for association of RENT with rDNA.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Heterocromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/metabolismo
12.
J Cell Biol ; 201(6): 843-62, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23751495

RESUMEN

Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APC(Cdc20)). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25(+)) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2A(Cdc55) triggers anaphase onset.


Asunto(s)
Anafase/fisiología , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metafase/fisiología , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Genes cdc/fisiología , Fosforilación/fisiología , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación/fisiología , ras-GRF1/genética , ras-GRF1/metabolismo
13.
Mol Cell Biol ; 28(22): 6903-18, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794362

RESUMEN

Silent chromatin in Saccharomyces cerevisiae is established in a stepwise process involving the SIR complex, comprised of the histone deacetylase Sir2 and the structural components Sir3 and Sir4. The Sir3 protein, which is the primary histone-binding component of the SIR complex, forms oligomers in vitro and has been proposed to mediate the spreading of the SIR complex along the chromatin fiber. In order to analyze the role of Sir3 in the spreading of the SIR complex, we performed a targeted genetic screen for alleles of SIR3 that dominantly disrupt silencing. Most mutations mapped to a single surface in the conserved N-terminal BAH domain, while one, L738P, localized to the AAA ATPase-like domain within the C-terminal half of Sir3. The BAH point mutants, but not the L738P mutant, disrupted the interaction between Sir3 and nucleosomes. In contrast, Sir3-L738P bound the N-terminal tail of histone H4 more strongly than wild-type Sir3, indicating that misregulation of the Sir3 C-terminal histone-binding activity also disrupted spreading. Our results underscore the importance of proper interactions between Sir3 and the nucleosome in silent chromatin assembly. We propose a model for the spreading of the SIR complex along the chromatin fiber through the two distinct histone-binding domains in Sir3.


Asunto(s)
Cromatina/metabolismo , Silenciador del Gen , Mutación , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cromatina/genética , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química
14.
J Proteome Res ; 6(3): 1190-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17330950

RESUMEN

Protein phosphorylation is essential for numerous cellular processes. Large-scale profiling of phosphoproteins continues to enhance the depth and speed at which we understand these processes. The development of effective phosphoprotein and peptide enrichment techniques and improvements to mass spectrometric instrumentation have intensified phosphoproteomic research in recent years, leading to unprecedented achievements. Here, we describe a large-scale phosphorylation analysis of alpha-factor-arrested yeast. Using a multidimensional separation strategy involving preparative SDS-PAGE for prefractionation, in-gel digestion with trypsin, and immobilized metal affinity chromatography (IMAC) enrichment of phosphopeptides, followed by LC-MS/MS analysis employing a hybrid LTQ-Orbitrap mass spectrometer, we were able to catalog a substantial portion of the phosphoproteins present in yeast whole-cell lysate. This analysis yielded the confident identification of 2288 nonredundant phosphorylation sites from 985 proteins. The ambiguity score (Ascore) algorithm was utilized to determine the certainty of site localization for the entire data set. In addition, the size of the data set permitted extraction of known and novel kinase motifs using the Motif-X algorithm. Finally, a large number of members of the pheromone signaling pathway were found as phosphoproteins and are discussed.


Asunto(s)
Fosfoproteínas/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Cromatografía , Electroforesis en Gel de Poliacrilamida , Feromonas , Fosfopéptidos/análisis , Fosforilación , Transducción de Señal , Espectrometría de Masas en Tándem , Tripsina/metabolismo
15.
Mol Cell Proteomics ; 4(3): 246-54, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15542864

RESUMEN

Sumoylation represents a vital post-translational modification that pervades numerous aspects of cell biology, including protein targeting, transcriptional regulation, signal transduction, and cell division. However, despite its broad reaching effects, most biological outcomes of protein sumoylation remain poorly understood. In an effort to provide further insight into this complex process, a proteomics approach was undertaken to identify the targets of sumoylation en mass. Specifically, SUMO-conjugated proteins were isolated by a double-affinity purification procedure from a Saccharomyces cerevisiae strain engineered to express tagged SUMO. The components of the isolated protein mixture were then identified by subsequent LC-MS/MS analysis using an LTQ FT mass spectrometer. In this manner, 159 candidate sumoylated proteins were identified by two or more peptides. Furthermore, the high accuracy of the instrument, combined with stringent search criteria, enabled the identification of an additional 92 putative candidates by only one peptide. The validity of this proteomics approach was confirmed by performing subsequent Western blot experiments for numerous proteins and determining the actual sumoylation sites for several other substrates. These data combine with recent works to further our understanding of the breadth and impact of protein sumoylation in a diverse array of biological processes.


Asunto(s)
Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Espectrometría de Masas , Datos de Secuencia Molecular , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA